首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
µ2-Oxobis[(2,4,6-tribromophenoxo)tris(para-tolyl)antimony] (I), µ2-oxobis[(2,3,4,5,6-pentachlorophenoxo) tris(para-tolyl)antimony] (II), and µ2-oxobis(2,4-dinitrophenoxo)tris(para-tolyl)antimony] (III) have been synthesized with high yields by the reaction of tris(para-tolyl)antimony with 2,4,6-tribromo-, 2,3,4,5,6-pentachloro-, and 2,4-dinitrophenol, respectively, in ether in the presence of tert-butylhydroperoxide. The Sb atoms in complexes I, II, and III have a distorted trigonal bipyramidal coordination with the aroxyl ligands and the bridging oxygen atom in axial positions. The central Sb–O–Sb moiety in molecules of complexes I–III has an angular structure.  相似文献   

2.
Bis(4-bromophenoxy)tris(para-tolyl)antimony (I), bis(4-nitrophenoxy)tris(para-tolyl)antimony (II), bis(4-nitrophenoxy)tris(4-fluorophenyl)antimony (III), bis(2,3,4,5,6-pentafluorophenoxy)tris(4-fluorophenyl) antimony (IV), and bis(2,3,4,5,6-pentachlorophenoxy)tris(4-fluorophenyl)antimony (V) (CIF files CCDC 1470829 (I), 1474589 (II), 1062337 (III), 1470476 (IV), and 1472954 (V)) are synthesized in high yields by the reactions of tris(para-tolyl)- and tris(4-fluorophenyl)antimony with 4-bromo-, 4-nitro-, 2,3,4,5,6-pentafluoro-, and 2,3,4,5,6-pentachlorophenol, respectively, in diethyl ether in the presence of tert-butyl hydroperoxide. The Sb atoms in compounds I–V have a distorted trigonal bipyramidal coordination with the aroxy groups in the axial positions (angles OSbO 174.08(11)°–179.4(5)°). The average Sb–C bond lengths in compounds I–V are similar and independent of the nature of the para-substituent in the aryl rings. The Sb–O distances are close to the sum of covalent radii of Sb and O atoms. Hydrogen bonds H···F are involved in the formation of the crystal structures of compounds III–V.  相似文献   

3.
Tris(4-N,N-dimethylaminophenyl)antimony dicarboxylates (4-Me2NC6H4)3Sb[OC(O)R]2 (R = C6H4Me-2 (I), C6H4Me-4 (II), CH=CHPh (III)), (4-Me2NC6H4)3Sb[OC(O)C(O)O] (IV), and (4-Me2NC6H4)3Sb[OC(O)C6Cl4C(O)O] (V)) and tris(4-N,N-dimethylaminophenyl)antimony diaroxides (4-Me2NC6H4)3Sb(OAr)2 (Ar = Ph (VI), C6H2Br3-2,4,6 (VII), and C6H3Me2-2,6 (VIII)) have been synthesized by the reaction of tris(4-N,N-dimethylaminophenyl)antimony in ether with carboxylic acids or phenols in the presence of hydrogen peroxide. According to X-ray diffraction analysis data, the Sb atoms in compounds I and VII have a distorted trigonal-bipyramidal coordination, and the axial OSbO angles are 175.4(1)° and 177.9(3)°, respectively. The Sb-O bond lengths are 2.133(3) and 2.142(2) Å in compound I and 2.089(5) Å in compound VII.  相似文献   

4.
The experimental and theoretical electron densities in complexes [6-(2,6-di-iso-propylphenyl)imino-2,4-di-tert-butylcyclohexa-2,4-diene-1-peroxo-1-olato-N,O,O′]tris(p-chlorophenyl)antimony(V), (p-Cl–C6H4)3Sb(2,6-iso-Pr–Ph–AP) · O2 (I), and [6-(2,6-dimethylphenyl)imino-2,4-di-tert-butylcyclohexa-2,4-diene-1-peroxo-1-olato-N,O,O′]tris(p-chlorophenyl)antimony(V), (p-Cl–C6H4)3Sb(2,6-Me–Ph–AP) · O2 (II), where AP is 4,6-di-tert-butyl-N-o-iminobenzoquinone dianion, are studied on the basis of high-resolution X-ray diffraction data and theoretical calculations using the density functional theory (B3LYP/DGDZVP). The nature of chemical bonds and the charge distribution on atoms are studied, and the energy of molecular oxygen addition to the Sb(V) o-aminophenolate complexes is estimated. The structures are deposited with the Cambridge Crystallographic Data Centre (CIF files CCDC nos. 1560600 (spherical refinement) and 1560601 (multipole refinement) for complex I; 1560602 (spherical) and 1560603 (multipole) for complex II).  相似文献   

5.
Tris(para-tolyl)antimony bis(2-oxybenzaldoximate) (I), tris(para-tolyl)antimony bis(2-nitrobenzaldoximate) (II), tris(para-tolyl)antimony bis(2-bromobenzaldoximate) (III), tris(3-fluorophenyl)antimony bis(2-oxybenzaldoximate) (IV), tris(4-fluorophenyl)antimony bis(2-bromobenzaldoximate) (V), and tris(4-fluorophenyl)antimony bis(2-nitrobenzaldoximate) (VI) are synthesized by the reactions of tris(paratolyl)-, tris(3-fluorophenyl)-, and tris(4-fluorophenyl)antimony with 2-oxy-, 2-nitro-, and 2-bromobenzaldoxime in diethyl ether in the presence of tert-butyl hydroperoxide. The Sb atoms in complexes IVI have a distorted trigonal bipyramidal coordination mode with the oximate ligands in the axial positions. CIF files CCDC nos. 1062231 (I), 1059962 (II), 1465384 (III), 1465109 (IV), 1471948 (V), and 1060387 (VI).  相似文献   

6.
The syntheses, structures, and solid-state emission characteristics of trans-bis(salicylaldiminato)Pt(II) complexes bearing N-aromatic functionalities are described herein. A series of Pt complexes bearing various N-phenyl (1) and N-(1-naphthyl) (2) groups on the salicylaldiminato ligands were prepared by reacting PtCl2(CH3CN)2 with the corresponding N-salicylidene aromatic amines, and the trans-coordination and crystal packing of these complexes were unequivocally established based on X-ray diffraction (XRD). Complexes with 2,6-dimethylphenyl (1c), 2,6-diisopropylphenyl (1d), 1-naphthyl (2a), and 1-(2-methylnaphthyl) (2b) groups on the N atoms exhibited intense phosphorescent emission at ambient temperature in the crystalline state, while those with phenyl (1a), 2,6-dibromophenyl (1b), and 2,6-bis(N,N-dimethylamino)phenyl (1e) functionalities were either less emissive or non-emissive under the same conditions. XRD analyses identified significant intramolecular interactions between Pt and H atoms of the N-aryl functionalities in the emissive crystals of 1c, 1d, and 2a. These interactions were evidently an important factor associated with intense emission at ambient temperature.  相似文献   

7.
Metal(II) complexes of 4-(((2-hydroxynaphthalen-1-yl)methylene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HL) were prepared, and their compositions and physicochemical properties were characterized on the basis of elemental analysis, with1HNMR, UV–Vis, IR, mass spectroscopy and thermogravimetric analysis. All results confirm that the novel complexes have a 1:1 (M:HL) stoichiometric formulae [M(HL)Cl2] (M = Cu(II)(1), Cd(II)(5)), [Cu(L)(O2NO)(OH2)2](2), [Cu(HL)(OSO3)(OH2)3]2H2O(3), [Co(HL)Cl2(OH2)2]3H2O(4), and the ligand behaves as a neutral/monobasic bidentate/tridentate forming a five/six-membered chelating ring towards the metal ions, bonding through azomethine nitrogen, exocyclic carbonyl oxygen, and/or deprotonated phenolic oxygen atoms. The XRD studies show that both the ligand and Cu(II) complex (1) show polycrystalline with monoclinic crystal structure. The molar conductivities show that all the complexes are non-electrolytes. On the basis of electronic spectral data and magnetic susceptibility measurements, a suitable geometry has been proposed. The trend in g values (g ll > g  > 2.0023) suggest that the unpaired electron on copper has a \(d_{{x^{2} - y^{2} }}\) character, and the complex (1) has a square planar, while complexes (2) and (3) have a tetragonal distorted octahedral geometry. The molecular and electronic structures of the ligand (HL) and its complexes (15) have been discussed. Molecular docking was used to predict the binding between HL ligand and the receptors of the crystal structure of Escherichia coli (E. coli) (3t88) and the crystal structure of Staphylococcus aureus (S. aureus) (3q8u). The activation thermodynamic parameters, such as activation energy (E a), enthalpy (ΔH), entropy (ΔS), and Gibbs free energy change of the decomposition (ΔG) are calculated using Coats–Redfern and Horowitz–Metzger methods. The ligand and its metal complexes (15) showed antimicrobial activity against bacterial species such as Gram positive bacteria (Bacillus cereus and S. aureus), Gram negative bacteria (E. coli and Klebsiella pneumoniae) and fungi (Aspergillus niger and Alternaria alternata); the complexes exhibited higher activity than the ligand.  相似文献   

8.
A 3 × 3 isomer grid of nine Methylphenyl-N-pyridinylcarbamates (CxxM) is reported with seven CxxM crystal structures at 294 K (xx = pp, pm, po, mp, op, om, oo; x = para-, meta-, ortho), where Cx = pyridinyl ring (as C5NH4NH-) and xM is representative of –C(=O)OC6H4CH3. All seven carbamate crystal structures aggregate via N–H…N intermolecular interactions with the three CpxM carbamates having C(6) zigzag chains, CmpM with C(5) zigzag chains and three ortho-pyridine CoxM structures as hydrogen-bonded dimers with graph set \(R_{2}^{2}\) (8) and augmented by flanking C–H…O contacts. The CpoM crystal structure crystallises with 0.25 CHCl3 per carbamate molecule and solvent channels aligning along the a-axis direction. Conformational analyses of the nine minimised CxxM structures in gas phase are detailed for comparisons with the solid-state structures and demonstrate similarities between both structural methods. The modelling results also demonstrate the problems associated with pendant ortho-groups sterically clashing in the CmoM and CooM structures and methods to find a reasonable estimate of the CxxM conformational landscape.  相似文献   

9.
The reaction of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) with LiAlH4 affords two products regardless of the solvent used (tetrahydrofuran or diethyl ether). These products were isolated as green and colorless crystals. Green crystals of the complex [(dpp-bian)Al(H)2Li(THF)3] (1) were obtained from tetrahydrofuran; colorless crystals of the complex [{dpp-bian(H2)}Al(H)2Li(Et2O)2] (2), from diethyl ether. The reactions of compound 1 with 2,6-di-tert-butyl-4-methylphenol and benzophenone gave monohydrides [(dpp-bian)Al(H)(OC6H2-2,6-Bu2 t-4-Me)][Li(THF)4] (3) and [(dpp-bian)Al(H)(OCHPh2)- Li(THF)2] (4), respectively. The diamagnetic aluminum hydride [(dpp-bian)AlH(THF)] (5) was synthesized by the reaction of dichloroalane HAlCl2 (in situ) with the disodium salt of dpp-bian in THF; the paramagnetic hydride [(dpp-bian)AlH(Cl)] (6) containing the dpp-bian radical anion was synthesized by the reaction of the monosodium salt (dpp-bian)Na with monochloroalane H2AlCl (in situ) in diethyl ether. The reaction of compound 6 with tert-butyllithium gives the complex [(dpp-bian)AlBut(Et2O)] (7). Diamagnetic derivatives 1—5 and 7 were characterized by 1Н NMR spectroscopy; paramagnetic compound 6, by ESR spectroscopy. The molecular structures of compounds 1—7 were determined by single-crystal X-ray diffraction.  相似文献   

10.
A series of new arene ruthenium(II) complexes were prepared by reaction of ruthenium(II) precursors of the general formula [(η6-arene)Ru(μ-Cl)Cl]2 with N,N′-bidentate pyridyl-imine ligands to form complexes of the type [(η6-arene)RuCl(C5H4N-2-CH=N-R)]PF6, with arene = C6H6, R = iso-propyl (1a), tert-butyl (1b), cyclohexyl (1c), cyclopentyl (1d) and n-butyl (1e); arene = p-cymene, R = iso-propyl (2a), tert-butyl (2b). The complexes were fully characterized by 1H NMR and 13C NMR, UV–Vis and IR spectroscopies, elemental analyses, and the single-crystal X-ray structures of 2a and 2b have been determined. The single-crystal molecular structure revealed both compounds with a pseudo-octahedral geometry around the Ru(II) center, normally referred to as a piano stool conformation, with the pyridyl-imine as a bidentate N,N ligand. The activity of all complexes in the transfer hydrogenation of cyclohexanone in the presence of NaOH and iso-propanol is reported, the compounds showing turnover numbers of close to 1990 and high conversions. Complex 2b was also shown to be very effective for a range of aliphatic and cyclic ketones, giving conversions of up to 100 %.  相似文献   

11.
Six copper(II) oxalate complexes, namely {K2[Cu(ox)2]} n (1), {(Hiz)2[Cu(ox)2]} n (2), {[Cu(ox) (N-Bzliz)2]} n (3), (HMeiz)2[Cu(ox)2] (4), {[Cu(ox)(Meiz)2]} n (5), and [Cu(Hox)2(H2O)2](N-Bzliz) (6) where ox = oxalate ion, iz = imidazole, N-Bzliz = N-benzylimidazole, Meiz = 2-methylimidazole, were synthesised and characterised by single crystal X-ray diffraction (complexes 1–5) or powder X-ray diffraction (compound 6). The three-dimensional crystal packing structures of 2, 4, and 5 are consolidated by intermolecular hydrogen bonds linking the oxygen atom of the oxalate group and the amine or imine group of the imidazole-based part into chains. The molecules of complex 6 are held together by intermolecular hydrogen bonds between the oxygen atoms of the oxalate group and coordinated water molecules.  相似文献   

12.
Reactions of N-(1H-benzoimidazol-2-ylmethyl-2-methoxy)aniline (L1) and N-(1H-benzoimidazol-2-ylmethyl-2-bromo)aniline (L2) with p-TsOH, Pd(AOc)2 and two equivalents of PPh3 or PCy3 produced the corresponding palladium complexes, [Pd(L1)(OTs)(PPh3)] (1), [Pd(L2)(OTs)(PPh3)] (2) and [Pd(L1)(OTs)(PCy3)] (3), respectively, in good yields. The new palladium complexes 13 and the previously reported complexes [Pd(L1)ClMe] (4) and [Pd(L2)ClMe] (5) gave active catalysts in the methoxycarbonylation of terminal and internal olefins to produce branched and linear esters. The effects of complex structure, nature of phosphine derivative, acid promoter and alkene substrate on the catalytic activities and selectivity have been studied and are herein reported.  相似文献   

13.
This paper describes the synthesis of (pyridyl)benzoazole Zn(II) and Cu(II) complexes and their applications as catalysts in ring-opening polymerization (ROP) of ε-caprolactone (ε-CL). Reactions of 2-(3-pyridyl)-1H-benzimidazole (L1), 2-(2-pyridyl)-1H-benzothiazole (L2) and 2-(2-pyridyl)-1H-benzimidazole (L3) with Zn(II) and Cu(II) acetates produced the corresponding complexes; [Zn2(L1)2(OAc)4)] (1), [Cu2(L1)2(OAc)4] (2), [Zn(L2)(OAc)2)] (3), [Zn(L3)(OAc)2)] (4) and [Cu(L3), (OAc)2)] (5). Molecular structures of complexes 2 and 5a revealed that while L1 adopts a monodentate binding mode, through the pyridyl nitrogen atom, L3 exhibits a bidentate coordination mode. All the complexes formed active catalysts in the ROP of ε-CL to afford moderate molecular weight polymers. The kinetics of the ROP reactions of ε-CL were pseudo-first-order with respect to monomer and catalysts.  相似文献   

14.
1,1′-Dinaphthyl ketone (15), 1,2′-dinaphthyl ketone (18), 2,2′-dinaphthyl ketone (19), 1,1′-dinaphthyl thioketone (16), 1,2′-dinaphthyl thioketone (20), 2,2′-dinaphthyl thioketone (21), 1,1′-dinaphthyldiazomethane (17), 1,2′-dinaphthyldiazomethane (22), and 2,2′-dinaphthyldiazomethane (23) have been synthesized. Ketone 15 has been prepared from di(1-naphthyl)methanol; ketone 18 has been prepared by a Friedel–Crafts acylation of naphthalene with 2-naphthoyl chloride; ketone 19 has been prepared by a Grignard reaction of 2-naphthylmagnesium bromide with 2-naphthoyl chloride. Thioketones 16, 20, and 21 have been prepared by reactions of the corresponding ketones 15, 18, and 19 with Lawesson’s reagent. The diazomethane derivatives 17, 22, and 23 have been prepared by the HgO oxidation of the respective hydrazones 25, 27, and 28 (prepared from the respective thioketones 16, 20, and 21). The crystal and molecular structures of ketones 15, 18, and 19 and of thioketone 16 have been determined. A variety of conformations in the crystal structures is noted: 1Z,1′Z (15), 1E,1′Z (16), 1E,2′E (18), 2Z,2′Z (19). The NMR experiments have demonstrated the downfield shifts of the protons peri to the carbonyl and the thiocarbonyl groups in 15, 16, and 18, but not in 20. A systematic DFT study (B3LYP/6-31G(d)) of the conformational spaces of 1523 and their 1H and 13C NMR chemical shifts has been performed. In each series of constitutional isomers, the order of stabilities is 2,2′-(NA)2C=X > 1,2′-(NA)2C=X > 1,1′-(NA)2C=X. The decrease in the stabilities of 1-naphthyl derivatives relative to 2-naphthyl derivatives is attributed to the increased overcrowding and the increased twist angles in 1-naphthyl derivatives. The increased stabilization of E-conformations with the increase of the radius of a heteroatom at C9 due to the steric reasons is noted. The DFT calculations satisfactorily describe the X-ray conformations of 15, 16, 18, and 19.  相似文献   

15.
Two nine-coordination coordination polymers of neodymium, [Nd2(p-C8H4O4)(o-C8H4O4)2 ? 4H2O] n (I), [Nd2(C10H4O8)(C10H2O8) ? 2H2O] n (II), have been prepared by hydrothermal reaction of Nd(NO3)3 ? 6H2O with terephthalic acid and phthalic acid, or benzenetetracarboxylic anhydride and determined by means of IR, UV, fluorescence, TG-DTA, cyclic voltammetry (CV) and X-ray single-crystal diffraction methods (CIF files CCDC nos. 1006206 (I), 979309 (II)). Yellow-green luminescence could been observed at 391 nm (λex = 305 nm) for complex I and 370 nm (λex = 331 nm) for the complex II. The emission of complexes I and II may be due to the π* → n transition, which may be assigned to the ligand-to-metal charge-transfer bands. Compared with complex II, the complex I exhibits a stronger fluorescence intensity for the different coordinated environment. Cyclic voltammetric measurement of the two compounds reveal that the compounds both have a couple of irreversible redox peak, indicating that the two polymers were both corresponded to the unusual Nd(III)/Nd(V).  相似文献   

16.
LC-ωPBE, B3LYP, and M06-2X methods with the 6–311+G** basis set on all atoms and natural bond orbital (NBO) interpretation were performed to investigate the roles and contributions of the effective factors on the potential energy surfaces of the hydrogen molecule elimination reactions of cyclohexa-1,4-diene (1) and its cis-3,6-dihalo derivatives [halogen=F (2), Cl (3), Br (4)] to hydrogen molecule and their corresponding aromatic rings. The ring puckering in compound 2 (which results from the repulsive electrostatic interactions between the natural bond orbital dipole moments of two C-F bonds) shortens the allylic hydrogen atoms’ distance, leading to the smaller barrier height in compound 2 compared to that in compound 1. The barrier heights of the hydrogen molecule elimination reactions increase from compounds 2 to 4 while their corresponding exothermic characters decrease. The variations of the advancements of transition state structures (δB av) reveal that the hydrogen molecule elimination reactions of compounds 24 do not obey the Hammond-Leffler postulate. In compound 2, the ring puckering shortens the allylic hydrogen distance (d H8-H10) while d H8-H10 values increase going from compounds 2 to 4, leading to the increase of their corresponding hydrogen molecule elimination reactions barrier heights. Interestingly, the variations of the vinylogous hyperconjugative anomeric effects justify the directions of the rings puckering going from compounds 2 to 4. The increase of the activation exchange components [PETR (TS)-PETR (GS)] going from compounds 2 to 4 correlates well with their corresponding hydrogen molecule elimination process barrier heights.  相似文献   

17.
Two zinc(II) complexes, [ZnL1Br]+ (1), and [ZnL2]2+ (2), are optimized by using density functional theory at B3LYP method with mix basis sets which are LANL2DZ/6–31G(d,p) and LANL2TZ+/6–31++G(d,p) basis sets. L1 and L2 are pentadentate macrocyclic Schiff-base ligands containing piperazine moiety. The optimized structures and structural parameters are obtained by using each basis set. IR and UV–VIS spectra of complex (1) and (2) are investigated in detail. NLO properties of Zn(II) complexes are investigated and it is found that NLO properties of complex (2) is better than complex (1). Solvent effects on biological activity are investigated in gas phase, water and chloroform for studied complexes and no solvent effects are monitored for complex (1) and (2). Biological reactivity of complex (1) is higher than that of complex (2).  相似文献   

18.
Upon stirring inclusion crystals of p-tert-butylthiacalix[4]arene (2) in solvents with heating, guest compounds were efficiently desorbed to yield guest-free crystals. More specifically, upon treatment with methanol, the exchange of guest compounds with methanol in the crystals, followed by the desorption of the methanol afforded metastable host crystals , whereas, upon treatment with heptane, the dissolution of the inclusion crystals and simultaneous crystallization of compound 2 afforded stable host crystals . Further, a host crystal of p-tert-butylcalix[4]arene (1) was recovered by the treatment of 2:1 (host/guest) inclusion crystals of compound 1 with supercritical carbon dioxide (scCO2), and through the combination of the guest exchange of 1:1 inclusion crystals of compound 1 with hexane and scCO2 treatment of the resulting 2:1 inclusion crystals 12·hexane. Although the recovered host crystal of compound 1 contained a small amount of CO2, it could be reused for the inclusion of organic compounds.  相似文献   

19.
This paper describes the hydrothermal synthesis, full characterization, and architectural diversity of three intriguingly bioactive cobalt–organic frameworks, namely, 3D [Co(HL ? )2(BPY)] n ·4nH2O (1), 2D [Co(HL ? )2(BPE)] n (2), and 2D [Co(HL ? )2(DPP)] n (3) coordination polymers, synthesized through a mixed ligand strategy using H 2 L (1-H-indazole-3-carboxylic acid) as a main structural block and the flexible bipyridine and its derivatives (BPY = 4,4′-bipydine, BPE = 1,2-bis(4-pyridyl)ethane, DPP = 1,3-bis(4-pyridyl)propane) as auxiliary ligand sources. Complexes 13 were isolated as air stable and slightly soluble crystalline solids and characterized using elemental analysis, FT-IR, electrochemical technique, thermogravimetric analysis, powder X-ray diffractometer, and single-crystal X-ray crystallography. The bipyridine derivatives played key roles in defining the structural space group and dimensionality feature of the obtained networks. The abundant H-bonding and ππ stacking interactions in complexes 13 gave rise to their intricate metal–organic structures of 3D (1), 2D (2), and 2D (3). In addition, the solutions of complexes 13 showed profound antifungal activities against the selected strain of Colletotrichum musae compared with the controlled group using benomyl as a traditional agrochemical fungicide.  相似文献   

20.
Two copper complexes with long rigid ligands, Cu(Tta)2(L1) (I), and Cu(Tta)2(L2) (II), where L1 = (E)-3-(4-(1H-benzo[d]imidazol-1-yl)-(4-phenyl)phenyl)-1-phenylprop-2-en-1-one, L2 = (E)-3-(4-(1H-imidazol-1-yl)phenyl)-1-(4-phenyl)phenyl)prop-2-en-1-one), have been synthesized and characterized. The single-crystal X-ray analysis (CIF files CCDC nos. 1409671 (I) and 1409672 (II)) for complexes I and II demonstrates that each copper ion assumes a distorted square-pyramidal MO4N polyhedron in which four oxygen atoms come from the Tta ligands, and one nitrogen atom comes from the N-donor ligand. Both of the complexes are linked into 3D networks through weak intermolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号