首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electronic and geometric structures, energy stabilities, normal mode frequencies, and spin density distributions (in radicals) of different stepwise-chlorinated aluminum clusters Al13Cl n ? (n = 1–9) are calculated within the B3LYP approximation of the density functional theory using 6-31G* and 6-311+G* basis sets. The results are compared with analogous computation data on hydrides Al13H n ? (n = 1–12) obtained at the same level. The general qualitative pattern for related series of hydrides, chlorides, and iodides (as well as fluorides and bromides) turns out to be similar in many respects. For all Al13X n ? clusters with different electronegative substituents X, there is a set of a considerable number of low-lying closely spaced inner isomers (with a centered icosahedral cage), marquee isomers, and outer isomers (capped). The effects found by calculations in centered icosahedral isomers—localization of spin density on the trans-Al* atom in radical anions and its associated trans addition rule for an even substituent and the zigzag (odd-even) dependence of the energies D n (X) of successive addition of substituents X to the metal cage on n described in the framework of the molecular model of the valence states of the Al 13 ? superatom—should also be shared by many Al13X n ? series with different X’s. The differences between hydrides Al13H n ? and chlorides Al13Cl n ? of the same type are quantitative. For the hydrides, inner isomers are preferable in the first half of the series (n = 1–6); and in the second half (n = 7–12), outer isomers are more favorable. For the chlorides, icosahedral isomers are preferable only at the very beginning of the series. In the other cases, nonicosahedral structures are most favorable, for which the situation becomes very complicated due to the large number of position isomers and the aforementioned simple rules found for centered icosahedral structures are fulfilled to a considerably less extent or not at all.  相似文献   

2.
Clusters Al2P2 n (n = 1–4) were theoretically investigated using density functional theory (DFT) methods at the B3LYP/6-311+G* and B3PW91/6-311+G* levels of theory. The calculated results showed that the planar structure (D 2h symmetry) of Al2P2 n (n = 1–4) species was the global minimum. And the negative nucleus-independent chemical shift (NICS) value of Al2P2 n (n = 1–4) species indicated the existence of a ring current in the planar structure (D 2h symmetry). A detailed molecular orbital (MO) analysis revealed that the planar structures (D 2h symmetry) had π aromaticity, which further exhibited the strongly aromatic character for Al2P2 n (n = 1–4) species.  相似文献   

3.
Analytical relations through the initial values are derived for the molecular auxiliary functions A α (x) and B n (x), where α =n+ɛ, 0⩽ ɛ < 1 and n=0,1,2,.... These relations are useful in the fast calculation of multicenter molecular integrals over integer and noninteger n Slater type orbitals. It is shown that the formulas obtained are numerically stable for all values of nand x.PACS No: 31.15.+q, 31.20.EjAMS subject classification: 81-V55, 81-V45  相似文献   

4.
The equilibrium geometric configurations of the Li[C n ]1 (n = 7–12) complexes, where [C n ]1 is a cylindrical hydrocarbon containing the simplest zigzag nanotube fragment, were determined by the density functional theory method with the PBE0 exchange-correlation functional. Analytic molecular orbital (MO) estimates were obtained for isolated [C n ]1 hydrocarbons in the Hückel approximation. The appearance of nonbonding MOs for hydrocarbons with even n was demonstrated. Equilibrium structure types were found to alternate as n increased. This alternation correlated with the behavior of the frontier orbitals of the [C n ]1 hydrocarbon. At odd n, the Li atom was situated near the boundary of the π electron density of the bracelet, and the complex had C s symmetry. Complexes with even n had the C 2v point group, and lithium was situated in the inner cylinder cavity above the center of one of benzene rings.  相似文献   

5.
The hydration of hydroxyl ion in water vapors at temperatures corresponding to seasonal variations in natural air medium is studied by the Monte Carlo simulation in grand canonical statistical ensemble using the detailed model of intermolecular forces that takes into account many-particle covalent interactions, polarization, and charge transfer. An increase in the number of water molecules in a cluster is accompanied by a structural transition from strongly asymmetric ion environment of water molecules to the formation of enveloping shell composed of these molecules. This transition is accompanied by an abrupt increase in cluster size and qualitative changes in its structural characteristics. The displacement of ion on the surface of clusters with extremely small sizes is an entropy effect. Results of simulation are compared with data on the hydration of hydroxonium at which similar structural transition is not observed, and with data of quantum-chemical calculations.  相似文献   

6.
The reaction of the closo-dodecaborate anion with hydrogen halides in dichloroethane is studied. Regardless of the hydrogen halide used (HCl, HBr, HI), the chlorination process with the formation of monoand disubstituted products is the main in all cases. The substitution has a weakly pronounced stepwise character. The synthesized compounds are identified by IR spectroscopy, 11B NMR, and ESI mass spectrometry. The structure of a single crystal of the complex Ni(Bipy)3(B12H10.668Cl1.332) · 3CH2CN · 0.464H2O is determined by X-ray diffraction analysis.  相似文献   

7.
8.
The reactions of the closo-decaborate anion with hydrogen halides and dichloroethane have been studied. Irrespective of the hydrogen halide used (HCl, HBr, HI), chlorination to give mono-, di-, and trihalosubstituted products is the major process. The product ratio depends on the hydrogen halide used and on the synthesis temperature and time. The products have been identified by 11B NMR, IR, and ESI mass spectra. The structure of (Ph3(NaphCH2)P)2B10H8Cl2 has been studied by X-ray diffraction. The geometry distortion of the closo-decaborate core found in the chlorinated derivatives is retained on further chemical transformations of the compound.  相似文献   

9.
Compounds [Et4N]2B3H8 and CsB3H8 are studied using the ESCA method. The results of analysis of the B1s electron spectra and estimation of the effective charge differences in [Et4N]2B3H8 are compared to the data of theoretical calculations of the B3H8 anion.  相似文献   

10.
Nanoclusters of lead (Pb n , n = 1–6) were studied theoretically employing MP2 and M062X methods. Structural and thermodynamic properties as well as ionization energies and electron affinities of two isomers of Pb3, six isomers of Pb4, seven isomers of Pb5 and seven isomers of Pb6 were obtained at 298 K. Rhombic, pyramidal and octagonal structures were the most stable forms of the Pb4, Pb5 and Pb6 clusters, respectively. Proton affinities of the Pb n clusters were computed, which were in the range of 200–250 kcal/mol. Adsorption of C2H2, C2H4, CO, CO2, CH2O, HNO, O3, NO, N2O, NO2, N2O4 and N2O5 on the Pb n clusters was studied. O3 showed the strongest interaction with the Pb n clusters with adsorption enthalpies of 80–130 kcal/mol. HNO, O3, N2O, N2O4 and N2O5 were dissociated after adsorption on the Pb n clusters. N2O decomposes to adsorbed O atom and a free N2 molecule, while N2O4 and N2O5 release a NO2 molecule.  相似文献   

11.
A new method of synthesis of the B3H8 anion has been suggested. The method uses the reaction of some metal halides (CuCl, SnCl2, CrCl3, PbF2, PbCl2, PbBr2, and BiCl3) with sodium tetrahydroborate. It is characterized by high (up to quantitative) yields and simplicity of isolation of the target products ((n-C4H9)4N)[B3H8] and Cs[B3H8].  相似文献   

12.
We have applied various theoretical methods to gain detailed insights into the isomers as well as the transition states (TSs) along the corresponding reaction pathways for RSNO (R=H, C n H2n+1 n ≤ 4). On the basis of G2 and G2MP2 results, the relative order of stability for R=H is estimated to be trans-HSNO > cis-HSNO > HNSO > cis-HONS trans-HONS, while it is cis-CH3SNO trans-CH3SNO > CH3NSO > trans-CH3ONS > cis-CH3ONS for R=CH3. A similar trend is also obtained from the B3P86 method with considerably less computing effort if the nearly isoenergetic isomers cis-HONS and trans-HONS are ignored. Based on the results of B3P86, cis-RSNO is more stable than trans-RSNO when R=H is replaced by alkyl groups except for R=t-Bu. Natural bond orbital analyses allow us to explore whether the high reactivity of S-nitrosothiols is due to the strong negative hyperconjugation (). The mesomeric effect of S-nitrosothiols, although non-negligible, does not cause the breakage of N–O bond due to the compensation of columbic attraction between N and O.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
The n-decane–n-hexadecane–cyclododecane, n-decane–cyclododecane, and n-hexadecane–cyclododecane systems are studied by means of low-temperature differential thermal analysis using a differential scanning heat flow calorimeter. It is noted that all studied systems belong to the eutectic type. It is concluded that in the n-decane–n-hexadecane–cyclododecane system, the eutectic composition contains 85.0 wt % n10Н22, 4.0 wt % n16Н34, and 11.0 wt % С12Н24. It has a melting point of ?35.0°C.  相似文献   

14.
We present the first infrared spectra of a mass-selected deprotonated peptide anion (AlaAlaAla) and its decarboxylated fragment anion formed by collision induced dissociation. Spectra are obtained by IRMPD spectroscopy using an FTICR mass spectrometer in combination with the free electron laser FELIX. Spectra have been recorded over the 800–1800 cm−1 spectral range and compared with density functional theory calculated spectra at the B3LYP/6-31++G(d,p) level for different isomeric structures. These experiments suggest a carboxylate anion for [M-H] and an amide deprotonated (amidate) structure for the a 3 fragment anion [M-H-CO2]. The frequency for the amidate carbonyl stretch occurring around 1555±5 cm−1 has been confirmed by additional spectroscopic studies of the conjugated base of N-methylacetamide, which serves as a simple model system for the deprotonated amide linkage in a peptide anion.  相似文献   

15.
The ground-state equilibrium geometries of the linear carbon chain cations NC2n N+ (n = 1–7) have been investigated with B3LYP, CAM-B3LYP, and RCCSD(T) calculations. The ground state (X2Пg/u) and excited state (12Пu/g) have been optimized by using the complete active space self-consistent field method. The present study reveals that these linear cations generally have the characteristic of bond length alternation in both electronic states. The vertical excited energies for the dipole-allowed (1, 2, 3)2Пu/g ← X2Пg/u transitions as well as the dipole-forbidden 12Φu/g ← X2Пg/u transitions have been computed with the complete active space second-order perturbation theory. The calculated transition energies of 12Пu/g ← X2Пg/u for NC2n N+ (n = 1–6) in the gas phase are 2.26, 2.09, 1.91, 1.72, 1.56, and 1.39 eV, respectively, which mutually agree well with the available experimental values of 2.11, 2.07, 1.88, 1.67, 1.49, and 1.34 eV. Moreover, the corresponding absorption wavelengths are predicted to have the significant nonlinear size dependence, which is different from the bands origin in NC2n N (n = 1–7).  相似文献   

16.
In an attempt to find single-source precursors, a series of small clusters of inorganic azides of indium (Br2InN3) n (n = 1–6) were studied using the dispersion correction density functional theory (wB97XD). The obtained (Br2InN3) n (n = 2–6) clusters have the core structures of 2n-membered ring with alternating indium and α-nitrogen atoms. The influences of cluster size (oligomerization degree n) on the structures, energies, IR spectra, and thermodynamic properties of clusters were discussed. The computed binding energies indicate the stability: 3A > 3B, 4B > 4C > 4A > 4D, 5E > 5D > 5B = 5C > 5A and 6I > 6C > 6D > 6G ≥ 6H > 6F > 6E > 6B > 6A. It is also found that (Br2InN3)2 and (Br2InN3)4 clusters possess higher stability than their neighbor sizes judged by the calculated second-order difference of energies (Δ2 E). Meanwhile, thermodynamic properties for (Br2InN3) n (n = 1–6) clusters increase with the increasing temperature and oligomerization degree n, and the oligomerizations are thermodynamically favorable at temperatures up to 800 K.  相似文献   

17.
Compounds based on CeO2 were synthesized as high-temperature environment-friendly inorganic pigments with interesting hues. The pigments have been synthesized by using the solid state reaction in the temperature range from 1,300 to 1,600 °C. The host lattice of these pigments is CeO2 that is doped by terbium ions. The incorporation of doped ions provides interesting orange colours after application into ceramic glaze. The goal was to develop conditions for the synthesis of these compounds and to determine the influence of calcination temperature on their colouring effects. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. The pigments were also evaluated from the standpoint of their structure and particle sizes.  相似文献   

18.
Methods of introducing functional groups into the [B10H10]2− anion based on electrophilic, radical, or nucleophilic substitution for exo-polyhedral hydrogen atoms have been surveyed. Special attention has been focused on nucleophilic substitution reactions promoted by acids, including protonic acids, anhydrous hydrogen halides, metal halides, and carbocations. In addition, methods of tailored functionalization of the substituents in the cluster have been described.  相似文献   

19.
The binding energy of Cu2+(H2O) is computed to be 98.4 kcal/mol and thus one-photon photodissociation is not possible in the 3400–3800 cm–1 (9.7–10.9 kcal/mol) region. To study whether the infrared photodissociation processes of Cu2+(H2O) can occur by multiple argon atoms tagging technique, density functional and CCSD(T) methods are used to investigate the geometries, OH stretching frequencies and the argon atom binding energies of Cu2+(H2O)Ar n (n = 1–4) complexes. Various isomers are found resulting from the different coordination sites of argon atoms. The OH stretches in these complexes are shifted to lower frequencies than those of the free water molecule, and the corresponding vibrational red shifts are progressively smaller as more argon atom is added to Cu2+ while binding an argon atom to an OH site should lead to additional sizable red shift to the OH stretching vibrations.  相似文献   

20.
Free energy, enthalpy, equilibrium work of formation from vapor, and structural characteristics of Cl?(H2O) n clusters in models with explicit account for the polarization of particles and many-particle covalent interactions, as well as in their absence, are calculated by the Monte Carlo method in a bicanonical statistical ensemble. The neglect of polarization interactions leads to discrepancies in the experimental values of free energy by up to 4k B T, even for first addition reactions. Taking into account polarization and many-particle interactions makes it possible to reach an agreement with experimental data on the free energy of hydration with an accuracy of no less than the error of experimental measurements (~0.1k B T). The account of polarization essentially affects the pattern of the curve of formation work and results in a decrease in the first coordination number of ion by one–two units. Disregard for polarization effects in clusters substantially narrows the region of metastable states of vapor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号