首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Abstract  

The density and surface tension of binary In–Sn and ternary Cu–In–Sn alloys have been measured by a sessile-drop method. Decrease of the density and of the surface tension was observed with rising temperature. With increased Sn content in the alloys, the density increased while the surface tension reduced slightly. Addition of Cu could significantly increase the density and surface tension in the Cu–In–Sn system. The surface tension of the Cu–In–Sn alloys was also calculated by means of Butler’s equation, and compared with experimental values, showing good agreement.  相似文献   

2.
We investigated of the kinematic viscosity of liquid Cu–Sn alloys upon heating and subsequent cooling by the method of the oscillating cylinder. For the liquids alloys Cu75Sn25, Cu50Sn50, Cu48Sn52, Cu32Sn68, and Cu17Sn83, the temperature dependencies of the viscosity upon heating deviate from the Arrhenius relation. The temperature dependencies of viscosity show the Arrhenius-like behaviour upon cooling for all investigated alloys. A discrepancy between the temperature dependencies of viscosity obtained upon heating and cooling arised. We built the concentration dependences of the kinematic viscosity of liquid Cu–Sn alloys upon cooling. The increase of the values of viscosity and activation energy of viscous flow in the concentration range corresponding to the existence of intermetallic compounds Cu3Sn in the solid state was observed. These results were qualitatively interpreted using the concept of microheterogeneities of liquid alloys.  相似文献   

3.
Electrical resistivity of liquid lead and indium (Pb–In) alloys with different compositions has been measured using the four-probe method in a large temperature range. Marked turning points on each resistivity–temperature (ρ–T) curve of the liquid Pb–In alloys can be observed far above the liquidus. The unusual variation of the resistivity of Pb–In melts suggests a structural transition of these melts, for resistivity is a sensitive parameter to the structure. Moreover, the DSC experiment of Pb–In melts supports the existence of a liquid–liquid (L–L) structure transition in Pb–In melts. Such a L–L structural transition can be described in terms of the gradual disappearance of atomic bonds corresponding to the crystal structure and/or to a reduction of the size of pre-formed atomic clusters. This implies an increase of disorder in the high temperature melts. The transition temperatures depend on the composition of Pb–In melts and the onset transition temperatures of the intermediate phase (α) Pb–63%In and Pb–70.6%In melts are higher than that of other compositions.  相似文献   

4.
A theoretical formalism that links thermodynamic properties to transport properties has been used to study the viscosity of Sn–Zn and In–Zn liquid alloys at various temperatures. The formalism was successful at describing the thermodynamic properties of these alloys and showed a better estimation of the viscosity of the Sn–Zn alloy than that of the In–Zn alloy.  相似文献   

5.
Activities of components in liquid Al–Ga and In–Sn alloys, the separation coefficients and vapour–liquid phase equilibrium in vacuum distillation were predicted using the molecular interaction volume model as a function of the activity coefficients. The results indicated that both Al and In are preferentially volatilised into vapour phase while Ga and Sn remain in residue. Similarly, we found that both the mass fraction and the content of Al and In in vapour phase increase as distillation temperature increases such that when the content of Al is 0.005985 wt% and In is 0.004141 wt% in vapour phase, respectively, in liquid phase, it was 70 wt% at T = 1073 K for both. The calculated values of activity and activity coefficients at various temperatures are presented. Comparison of the predicted values with experimental data indicates good agreement, thus verifying from statistical thermodynamics viewpoint that the model is stable and reliable.  相似文献   

6.
Using two different types of high temperature drop calorimeters, partial and integral enthalpies of mixing of liquid alloys were determined in the ternary Cu–Sb–Sn system. The system was investigated along four sections at 1100 K. Experimental data were used to find ternary interaction parameters by applying the Redlich–Kister–Muggianu model for substitutional solutions, and a full set of parameters describing the concentration dependence of the enthalpy of mixing was derived. From these, the isoenthalpy curves were constructed for 1100 K. The entire system shows exothermic enthalpy of mixing at the given temperature.  相似文献   

7.
A non-commercial Al4Cu0.5Mg alloy has been used for investigating the effects of the elemental Sn additions. Uniaxial die compaction response of the alloys in terms of green density was examined, and the results showed that Sn addition has no effect when compacting conducted under high pressures. In total, 93–95% green density was achieved with an applied pressure of 400 MPa. Thermal events occurring during the sintering of the emerging alloys were studied by using differential scanning calorimetry (DSC). First thermal event on the DSC analysis of the Al4Cu0.5Mg1Sn alloy is the melting of elemental Sn, whereas for Al4Cu0.5Mg alloy, it is the formation of Al–Mg liquid nearly at 450 °C. Also it is clearly seen on the DSC analysis that Sn addition led to an increase in the formation enthalpy of Al–Mg liquid phase. High Sn content and high sintering temperature (620 °C), therefore high liquid-phase content, caused decrease on the mechanical properties due to thick intergranular phases and grain coarsening. Highest transverse rupture strength and hardness values were obtained from Al4Cu0.5Mg0.1Sn alloy sintered at 600 °C and measured as 390 MPa and 73 HB, respectively.  相似文献   

8.
The thermochemical properties of melts of the binary In–La system were studied by the calorimetry method at 1250–1480 K over the whole concentration interval. It was shown that significant negative heat effects of mixing are characteristic features for these melts. Using the ideal associated solution (IAS) model, the activities of components, Gibbs energies and the entropies of mixing in the alloys, and the phase diagram of this system were calculated. They agree with the data from literature.  相似文献   

9.
The formation enthalpies of Cd–Ga–Sn, In–Sn–Zn, Cd–Ga–In–Sn, Ga–In–Sn–Zn and Cd–Ga–In–Sn–Zn liquid alloys are calculated by molecular interaction volume model (MIVM), which only using the limiting partial enthalpies of binary systems and the coordination numbers of the constituent elements in liquid alloys. The predicted values are compared with the experimental data and the values calculated using Hoch–Arpshofen model, which indicate that the model is reliable and convenient.  相似文献   

10.
The temperature and concentration dependences of the surface tension of lithium alloys based on lead are experimentally determined for the first time in a field of compositions with up to 20 at % lithium in lead in the temperature range from the liquidus up to 700 K. The isotherm of surface tension of the studied alloys in the range of compositions with ~10 at % Li in lead contains a minimum, as does the adsorption isotherm of lithium in the sub-eutectic area of PbLi compounds.  相似文献   

11.
The crystal structure of a natural sulfide Cu3,44Ag0,56Pb2Bi6S13 (Сmcm, Z = 4, a = 3.973(1) Å, b = 13.370(2) Å, c = 42.182(7) Å, R = 0.059) is determined. The structure has seven cation positions: two of them (Cu and Ag) are in a tetrahedral environment of sulfur atoms; one (Pb), in a special position (mm2), has a coordination polyhedron in the form of a bicapped trigonal prism; and the other cation positions are surrounded by sulfur atoms forming distorted octahedra. The mirror symmetry plane perpendicular to the c translation causes microtwinning by cutting a layer of trigonal prisms framed by tetrahedron ribbons. These layers are divided by those composed by edge-linked octahedra with a diagonal ribbon of five octahedra (N = 5). The cation and anion positions are ordered by individual sublattices with pseudohexagonal subcells on the m planes perpendicular to the a translation, which concentrate the positions of all the atoms. Supposedly, this natural sulfide is the previously described (1885) yet unconfirmed alaskaite mineral from the lillianite–heyrovskyite homological series and may be isostructural to the ourayite mineral.  相似文献   

12.
Shear viscosity measurements were performed for liquid Co–Sn alloys over a wide temperature range above the respective liquidus temperatures. A high temperature oscillating-cup viscometer was used. It was found experimentally that viscosity as a function of temperature obeys an Arrhenius law. The data were compared with calculated values, obtained from different thermodynamic approaches. A good agreement was found between experimental results and calculated ones by the Budai–Benkö–Kaptay model.  相似文献   

13.
The temperature dependence of electrical resistivity of Cu–Sn alloys, along with Cu–Sn–Bi alloys, has been investigated in a wide temperature range using the DC four-probe technique. Evidently abnormal changes are observed on ρ–T curves of these alloys. The result reveals that the irreversible and reversible changes on these ρ–Tcurves indicate the existence of the metastable microinhomogeneous structure and microheterogeneous structure (including some short range orders) of the Cu–Sn and Cu–Sn–Bi alloy melts, respectively. Furthermore, the addition of Bi increases the metastable microheterogeneity in the first heating process of Cu–Sn melts.  相似文献   

14.
The variations of thermal conductivity with temperature for Pb–Sn alloys were measured using a radial heat flow apparatus. The variations of electrical conductivity with the temperature for same alloys were determined from the Wiedemann–Franz law by using the measured values of thermal conductivity. According to present experimental results, the thermal and electrical conductivity of Pb–Sn alloys linearly decrease with increasing temperature but exponentially increase with increasing the composition of Sn. The enthalpy of fusion and the change of specific heat for Pb–Sn alloys were also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from eutectic liquid to eutectic solid.  相似文献   

15.
The cathodic behavior of tin, indium, and tin–indium alloys in 0.5-M solutions of oxalic, malic, and citric acids has been investigated using potentiodynamic techniques at temperature range of 30–60 °C. The results showed that the corrosion rate (I corr) is higher at lower indium percent (0.5% In) and starts to decrease gradually as increase of the In percent up to 5% In (although it is still higher than that of pure tin and lower than that of indium at 5% In) in all examined acids. The positive shift in corrosion potential with simultaneous increase in corrosion rate can be explained on the basis of the depolarizing action of β-InSn4 phase compared with pure tin. The negative shift in the corrosion potential with much higher corrosion rate in case of alloys IV and V (10% and 20% In, respectively) can be ascribed to the formation of γ-In3Sn phase which leads to the increase in the anodic to cathodic area ratio. The corrosion of the two investigated metals and their alloys is affected by the formation of soluble complex species with organic acid anions. The aggressiveness of the studied metals and their alloys decreases in the following order of the organic acids employed oxalic > malic > citric acid. The observed activation energy values support that the tested electrodes exhibit higher corrosion rates in oxalic acid solution than the corresponding values in the other investigated acids. X-ray diffraction and scanning electron microscopy photographs elucidated the types of phases formed in the prepared alloys. The presence of a definite amount of indium in tin alloy improves the hardness.  相似文献   

16.
17.
Journal of Thermal Analysis and Calorimetry - The mixing enthalpies of liquid Cu–Hf–Ni alloys were determined at 1873 K by applying a high-temperature isoperibolic calorimeter....  相似文献   

18.
Mixing enthalpies of alloys in the Cu–La system are measured using isoperibolic calorimetry method over the ranges 0 < x La < 0.185 at 1400–1430 K and 0.659 < x La < 1 at 1370 K. They have moderate exothermic values over the whole concentration range and agree with literature data. Activities of the components, enthalpies and entropies of formation of intermetallics in this system, and its phase diagram are optimized using an ideal associated solution (IAS) model, and agree with most literature data. The updated thermodynamic properties can be used in further investigation of multicomponent systems based on the binary Cu–La.  相似文献   

19.
The published experimental and calculated data (binary systems, x–y projection of the liquidus, table of invariant reactions with the liquid phase, and one isothermal and two polythermal sections) were used for constructing a spatial computer model of the T–x–y diagram of the Bi–In–Sn system that was supplemented with the regions of the decomposition of the compound BimInn and the polymorphic transformation of tin. It was determined that the T–x–y diagram comprises 173 surfaces and 74 phase regions. Using the model for analyzing the material balances of phases and their microstructural components at all the stages of crystallization was demonstrated.  相似文献   

20.
In this paper, the liquid-phase separation of ternary immiscible Al–Bi–Sn melts was studied with resistivity and thermal analysis methods at different temperatures. The resistivity–temperature curves appear anomalous and abrupt change as rising temperature, corresponding to the distinctive and low peak of melting process in the differential scanning calorimetry (DSC) curves, indicative of the occurrence of the liquid-phase separation. The anomalous behaviour of the resistivity temperature dependence is attributable to concentration–concentration fluctuations. The microheterogeneity–microhomogeneity transformation causes large fluctuations in concentration, which make the randomness and chaos of the atoms larger, leading to the greater impediment to electron movement and the sharp rise of resistivity. The addition of tin to the Al–Bi immiscible alloys decreases the monotectic reaction. It is concluded that concentration–concentration fluctuations are responsible for the anomalous behaviour of resistivity and DSC methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号