首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
本文首次将一系列α-芳香族酮酸通过与钛酸醉酯[Ti(OR~1)_4]的交换反应制备成钛羧酸盐,随后将它与锂试剂反应.在此体系中锂试剂发生了一个未见报道的新反应:将α-芳香族酮酸还原为相应的α-羟基羧酸.进一步研究表明,锂试剂同时可以发生加成反应,且因Ti(OR~1)_4,酮酸和锂试剂的不同,加成与还原的比例也随之不同.  相似文献   

2.
段新方  尹承烈 《化学学报》1997,55(2):167-171
本文通过脂肪簇和芳香族两类不同锂试剂R^2Li与酮酸钛盐ArCOCOOTi(OR^1)3的反应, 对新型钛调整体系中的还原反应进行了进一步研究。结果表明: 锂试剂对体系还原与加成比例的影响与酮酸钛盐中醇配体的相比显得较为微弱; 同时还证实了在钛调整体系的还原反应中起还原作用的氢原子只可能来自体系酮酸钛盐醇配体OR^1或锂试剂R^2Li两者中与杂原子相连的碳原子。  相似文献   

3.
一种新型钛体系(Ⅳ)──α-酮酸钛酸酯与锂试剂的还原反应段新方,尹承烈(北京师范大学化学系,北京,100875)关键词加成,还原,钛酸酯,交换反应由于钛的优良调整作用,使得锂试剂RLi不仅可以和α-酮酸钛酸酯ArCOCOOTi(OR1)3中的酮发生加...  相似文献   

4.
芳香族二硫醚在低价钛试剂作用下,S-S键还原断裂成芳硫负离子,再与α,β-不饱和酯(腈)发生Michael加成反应,得到β-硫代酸酯(腈)。  相似文献   

5.
富烯与α-萘基锂反应的研究   总被引:2,自引:0,他引:2  
本文研究了6,6-二烷基富烯与α-萘基锂反应的立体结构和溶剂效应。首次发现了富烯与有机锂的还原偶联反应。在乙醚-THF中α-萘基锂与6,6-二甲基、二乙基和甲基乙基富烯发生环外双键的加成、α-氢攫取、还原和还原偶联的竞争反应。与6-甲基-6-正丙基,正丁基,异丁基富烯发生还原偶联反应.与n=4,5,6的6,6-n亚甲基富烯分别进行α-氢攫取、还原和还原偶联反应.在1:1的乙醚-石油醚中,除6,6-四亚甲基富烯发生α-氢攫取外,其他所有富烯主要进行加成反应。利用上述反应合成一些新的取代和桥联双(环戊二烯基)钛、锆衍生物。  相似文献   

6.
本文研究了6,6-二烷基富烯与有机锂反应的立体效应。6,6-二甲基、甲基乙基、二乙基、甲基苯基富烯与乙基锂易发生环外双键的还原反应。6-甲基-6-正丙基、异丁基富烯同正丁基锂则发生环外双键的加成反应。6,6-多亚甲基富烯[C_5H-4=C(CH_2)_n]与有机锂的反应随n值不同而异,n=4的富烯同正丙基锂和正丁基锂进行α-攫氢和环外双键还原的竞争反应;n=5,6的富烯与乙基锂、异丙基锂和异丁基锂发生还原反应,与正丙基锂和正丁基锂则进行加成与还原的竞争反应。n=4的富烯与芳基锂发生α-攫氢反应,随n值增大则倾向于加成反应。通过上述反应所得的锂化合物合成了一系列新的仲、叔烷基和烯基取代的环戊二烯基钛、锆衍生物。应用~1H NMR证明了化合物的结构。  相似文献   

7.
金梅梅  杨义文  谭军 《合成化学》2011,19(6):791-793,801
研究了硫酸钛[Ti(SO4)2]催化α-蒎烯(1)合成龙脑的反应.最佳反应条件为:Ti(SO4)2于400℃焙烧2h,n(1):n(草酸)=1.0:0.4,w[Ti(SO4)2]=10%,依次于65℃反应1h,75℃反应4h,90℃反应1h.在最佳反应条件下,产率53.98%,含量50.97%.  相似文献   

8.
将手性配体通过交换反应引入α-芳族酮酸钛盐,以二烷基胺基锂为还原剂进行不对称还原反应得到α-羟基羧酸,对映体过量率在8.5%~24.9%之间。  相似文献   

9.
陈寿山  姚文庆 《化学学报》1990,48(5):494-500
本文研究了6,6-二烷基富烯与有机锂反应的立体效应。6,6二甲基、甲基乙基、二乙基、甲基苯基富烯与乙基锂易发生环外双键的还原反应。6-甲基-6-正丙基、异丁基富烯同正丁基锂则发生环外双键的加成反应。6,6-多亚甲基富烯[C5H4=C(CH2)n]与有机锂的反应随n值不同而异, n=4的富烯同正丙基锂和正丁基锂进行α-攫氢和环外双键还原的竞争反应; n=5,6 的富烯与乙基锂, 异丙基锂和异丁基锂发生还原反应, 与正丙基俚和正丁基锂则进行加成与还原的竞争反应,n=4 的富烯与芳基锂发生α-攫氢反应, 随n值增大则倾向于加成反应。通过上述反应所得的锂化合物合成了一系列新的仲、叔烷基和烯基取代的环戊二烯基钛、锆衍生物。应用^1HNMR证明了化合物的结构。  相似文献   

10.
以烯基碘代物为底物,丁基锂为锂代试剂,THF为溶剂,在TMSCl促进下通过分子内亲核取代反应合成了4个α-亚烷基-哌啶酮(2a~2d),其结构经~1H NMR,~(13)C NMR和HR-MS(ESI)确证。在最优反应条件(1 2 mmol,n-Bu Li 2.4 mmol,TMSCl 3 mmol,THF 20 m L,于170℃反应1 h)下,2a~2d收率68%~84%。  相似文献   

11.
Aromatic α-sulfinyl carboxylic acids can be rearranged to hemithioacetals or other derivatives of glyoxylic acid under the action of acid reagents was first reported by Pummerer1. Later, Russell and coworkers applied this rearrangement to β-ketosulfoxides, synthesized α-ketohemithioacetal2, which can be transformed to α-keto alcohol, α-keto aldehyde and α-hydroxy alcohol, α-hydroxy acid3. Furthermore, Hall and Poet reported that α-ketohemithio-acetal can be rearranged to the corresponding α-hydroxythioester in the presence of magnesium nitrate and sodium acetate or tertiary amine4. However, few reports of reaction of α-ketohemithioacetal can be seen in literature.  相似文献   

12.
Numerous chromatographic methods have been developed to detect α-keto acids in physiological or sea-water samples. These methods generally involve derivatization in a strongly acidic medium with elevated temperatures, desalting, preconcentration, and liquid-liquid extraction procedures prior to chromatographic analysis. These procedures may introduce significant errors because of adsorption losses, contamination, or decomposition of the α-keto acids. To avoid these potential problems, a chemically mild method to detect α-keto acids in sea water was developed. The method is based on the reaction of α-keto acids with 2,4-dinitrophenylhydrazine in sea water to form stable hydrazone derivatives. Desalting of the reaction mixture and preconcentration of the hydrazone derivatives is accomplished by a column-switching technique. The derivatives are separated by reversed-phase, high-performance liquid chromatography and detected by absorption spectrometry. Quantification of α-keto acids in the nM to μM concentration range shows complete recovery in sea water, excellent precision at 10–20 pmol (<5% relative standard deviation), and absorbances that are linearly related to α-keto acid concentrations. The detection limit of this method is 1–5 pmol for a 2-ml injection. Applications of this method to the detection of α-keto acids in marine sediment and sea-water samples are illustrated, and the first shipboard results are presented.  相似文献   

13.
A highly sensitive fluorimetric method for the determination of α-keto acids of biological importance is described. The α-keto acids react in dilute hydrochloric acid with 4,5-dimethoxy-1,2-diaminobenzene to give a compound which fluoresces in neutral solution. The method is selective for α-keto acids and the limits of detection are 30–750 pmol ml?1 of test solution. The fluorescent compounds in a reaction mixture of ten α-keto acids are separated within 18 min by high-performance liquid chromatography on a reversed-phase column with isocratic elution. The limits of detection for the acids are in the range 9–780 fmol in a 10-μl injection volume.  相似文献   

14.
This report describes a modular enzyme-catalyzed cascade reaction that transforms l - or d -α-amino acids to β-methyl-α-amino acids. In this process an α-amino acid transaminase, an α-keto acid methyltransferase, and a halide methyltransferase cooperate in two orthogonal reaction cycles that mediate product formation and regeneration of the cofactor pyridoxal-5′-phosphate and the co-substrate S-adenosylmethionine. The only stoichiometric reagents consumed in this process are the unprotected l - or d -α-amino acid and methyl iodide.  相似文献   

15.
1,4-Addition of RLi, RMgX, and (RS) 2CHLi reagents to unsaturated amides 2a-c followed by α-alkylation is shown to constitute a general and efficient synthetic procedure for the formation of two CC bonds in a single step.  相似文献   

16.
4,5-Diaminophthalhydrazide dihydrochloride is studied as a highly sensitive and selective chemiluminescence derivatization reagent for α-keto acids in liquid chromatography (LC). The reagent reacts selectively with α-keto acids in dilute hydrochloric acid to give derivatives which produce chemiluminescence by reaction with hydrogen peroxide and potassium hexacyanoferrate(III). The derivatives in the reaction mixture of eight biologically important α-keto acids are separated within 50 min by reversed-phase LC with isocratic elution, followed by chemiluminescence detection. The detection limits for the acids are in the range 4–50 fmol for a 20-μl injection.  相似文献   

17.
Solar-driven photocatalytic lignocellulose conversion is a promising strategy for the sustainable production of high-value chemicals, but selectivity control remains a challenging goal in this field. Here, we report efficient and selective conversion of lignocellulose-derived α-hydroxyl acids to tartaric acid derivatives, α-keto acids, and H2 using Pt-modified CdS catalysts. Pt nanoparticles on CdS selectively produce tartaric acid derivatives via C−C coupling, while atomically dispersed Pt on CdS switches product selectivity to the oxidation reaction to produce α-keto acids. The atomically dispersed Pt species stabilized by Pt−S bonds promote the activation of the hydroxyl group and thus switch product selectivity from tartaric acid derivatives to α-keto acids. A broad range of lignocellulose-derived α-hydroxyl acids was applied for preparing the corresponding tartaric acid derivatives and α-keto acids over the two Pt-modified CdS catalysts. This work highlights the unique performance of metal sulfides in coupling reactions and demonstrates a strategy for rationally tuning product selectivity by engineering the interaction between metal sulfide and cocatalyst.  相似文献   

18.
The addition of a catalytic amount (12%) of a copper(I) salt to a mixture of an α-lithio-α-chloroalkylphosphonate and an alkyllithium RLi or a Grignard reagent RMgX leads to the formation of a new organometallic reagent in which the R group has replaced the chlorine atom of the carbenoid. This nucleophilic alkylation of carbenoids can be performed with secondary-alkyl Grignard reagents, and with aryllithium, alkenyllithium and alkynyllithium reagents in good yields (60–80%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号