首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The fluorescence properties of 4-[4-(dimethylamino)styryl]-1-n-alkylpyridinium bromide (hemicyanine) dissolved in solvents of different polarities and viscosities (methanol, ethylene glycol, tetra-ethylene glycol, glycerol, benzyl alcohol, pyridine, and two ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM]BF4, and 1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM]PF6) were investigated. Significant increase in the fluorescence quantum yield and the fluorescence decay lifetime was observed with the increase in the viscosity of the solvent medium. It is because the intramolecular rotational motion of the molecule becomes more difficult in viscous liquid, which leads to a decrease in the nonradiative decay processes. The fluorescence quantum yields for all of the solutions followed a semiempirical law that depends only on the solvent viscosity. The correlation function C(t) was obtained for each solution by joining fluorescence decay curves measured at different wavelengths. From the fitted results of C(t), we observed the distinctive feature unique to the ionic liquids, in which the correlation functions for ionic liquid solutions are fitted to be biphasic, while they are monophasic for other solvents. The fluorescence maximum of hemicyanine dissolved in these ionic liquids red-shifted following the increase in the excitation wavelength.  相似文献   

2.
Three methyl end‐capped oligo(ethylene glycol) (MOEG) ethers ( 1b‐d ) and a methoxyderivative ( 1a ) of benzofulvene monomer BF3k were synthesized and induced to polymerize spontaneously by solvent removal to obtain soluble π‐stacked polymers bearing densely grafted MOEG side chains (poly‐ 1b – d ) and model polymer poly‐ 1a. The physicochemical features (e.g., solubility, NMR, MALDI‐TOF, and absorption/emission spectra, as well as MWD, conformation plot, and thermal properties) of the synthesized polymers were compared in a structure‐property relationship study. This approach afforded the following evidence. The structure of poly‐ 1a – d is very similar to that of BF3k , suggesting that the polymerization mechanism is not affected by the presence of the electron‐rich methoxy group or bulkier MOEG side chains. However, the latter appear to be capable of affecting the conformational behavior of the polymer backbone. The solubility of poly‐ 1a – d depends on the number of the oligo(ethylene glycol) monomeric units. In particular, poly‐ 1d , featuring a long MOEG side chain (n = 9), shows an amphiphilic character and is soluble in a number of organic solvents, whereas it interacts with water to give isolated macromolecules in equilibrium with nanosized water‐soluble aggregates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2446–2461, 2010  相似文献   

3.
Ethylene glycol solutions of gramicidin S, myoglobin and tetrabutylammonium bromide were analysed by means of electrospray mass spectrometry and their spectra were compared with those of aqueous solutions. The evaporation of water and ethylene glycol droplets, initially at room or elevated temperature, in air at room temperature was modelled. It was found that under conditions where a water droplet's radius would shrink by ~30%, an ethylene glycol droplet shrinks negligibly. Further, droplets that are initially hot (such as those that are ejected from a heated electrospray needle) cool very rapidly owing to evaporation and heat loss to ambient air, and subsequently evaporate much like droplets that are initially at room temperature. For gramicidin S, the ion abundances in ethylene glycol as solvent were ~200 times lower than those in water under room temperature operating conditions. In experiments where the spray probe was heated to ~100°C to reduce the viscosity of ethylene glycol, the gramicidin response difference between the solvents decreased to about a factor of 40. Similar trends were observed for myoglobin and the tetrabutylammonium ion. The gramicidin abundances in ethylene glycol, relative to those in water, are orders of magnitude too large to be accounted for using the conventional solvent evaporation model. It is speculated that decreasing the viscosity increases the velocity of ions drifting in ethylene glycol towards the solution/air interface and increases the total number of analyte ions desorbed at the Taylor cone during electrospray.  相似文献   

4.
Aggregation in mixed water-glycol and pure glycol solvents has been investigated with four related surfactants, bearing common C12 tails: anionic, sodium dodecylsulfate (SDS); cationic, dodecyltrimethylammonium bromide (C12TAB); zwitterionic C12-amidopropyldimethylamine betaine (betaine) and nonionic, octaethyleneglycol monododecyl ether (C12E8). The solvent media were water, water/ethylene glycol, and water/propylene glycol mixtures, as well as pure ethylene glycol (EG) and propylene glycol (PG), spanning relative dielectrics epsilon(r) from 79 to 30. Results from small-angle neutron scattering (SANS) experiments, employing deuterated solvents, were consistent with the presence of ellipsoidal, or cylindrical micelles, depending on solvent and surfactant type. In pure EG and PG solvents the ionic and zwitterionic surfactants exhibit only weak aggregation, with much smaller micelles than normally found in water. However, interestingly, pure EG is identified as a solvent in which nonionic C12E8 aggregates strongly, mirroring the behavior in water. In contrast when the solvent is changed to PG (epsilonr=30) aggregation of C12E8 is only minimal. Hence, aggregation is shown to be strongly dependent on surfactant type and identity of the glycol solvent.  相似文献   

5.
The principle relating to the selection of a proper matrix, cationization reagent, and solvent for matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) of synthetic polymers is still a topic of research. In this work we focused on the selection of a suitable MALDI solvent. Polystyrene PS7600 and poly(ethylene glycol) PEG4820 were analyzed by MALDI‐TOF MS using various solvents which were selected based on the Hansen solubility parameter system. For polystyrene (PS), dithranol was used as the matrix and silver trifluoroacetate as the cationization reagent whereas, for poly(ethylene glycol) (PEG), the combination of 2,5‐dihydroxybenzoic acid and sodium trifluoroacetate was used for all experiments. When employing solvents which dissolve PS and PEG, reliable MALDI mass spectra were obtained while samples in non‐solvents (solvents which are not able to dissolve the polymer) failed to provide spectra. It seems that the solubility of the matrix and the cationization reagent are less important than the polymer solubility. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
由于四苯硼盐在分析化学、生物学、电化学等各领域中的广泛用途及其大阴离子在研究与计算单个离子迁移热力学函数中所具有的特殊作用,人们对四苯硼盐的溶液热力学性质进行了广泛研究,特别是对四苯硼钠和可作为参考电解质的四苯硼盐进行了深入细致的研究 [1, 2],得到了一些重要的的结论,为溶液理论的研究提供了有力的实验基础 .但是文献中对难溶碱金属四苯硼盐由单一到不同混合溶剂中的迁移热力学性质的系统研究较少 .在前文 [3]对 KBPh4由水到水-异丙醇和由甲醇到甲醇-异丙醇混合溶剂的迁移自由能进行研究的基础上,我们系统地对 KB…  相似文献   

7.
The ability of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Poloxamers) to form "gels" (lyotropic liquid crystalline structures) in water is of interest to pharmaceutical applications. In such applications the presence of polar organic solvents is often desirable or required. The effect of such solvents on the stability of lyotropic liquid crystalline gels formed by PEO-PPO-PEO block copolymers was assessed by studying the phase behavior and structure in ternary isothermal (25 degrees C) systems of pharmaceutical interest consisting of Poloxamer 407 (EO(100)PO(70)EO(100)), water, and one of the following solvents (referred to here collectively as "glycols"): glycerol, propylene glycol, ethanol, polyethylene glycol 400, and glucose. Small-angle X-ray scattering was employed to establish the structure of the liquid crystals obtained and to determine their characteristic length scales. The stability range of the liquid crystalline gel phases in the systems studied was found to vary with the glycol type. For example, the micellar cubic structure can accommodate about 0.85:1 parts glucose per part water (in terms of weight) and up to as much as 5.5:1 parts propylene glycol per part water. A correlation between the glycol effects on the stability of the liquid crystalline phases and glycol physiochemical characteristics such as octanol/water partition coefficient or solubility parameter is proposed.  相似文献   

8.
Two hydrophilic branched oligo(ethylene glycol)-substituted PPV derivatives, poly(2,5-bis(1,3-bis(triethoxymethoxy)propan-2-yloxy)-1,4-phenylene vinylene) (BTEMP-PPV) and poly(2-methoxy-5-(1,3-bis(triethoxymethoxy)propan-2-yloxy)-1,4-phenylene vinylene) (MTEMP-PPV), are presented. Polymerizations have been performed via the dithiocarbamate precursor route, using lithium hexamethyldisilazide (LHMDS) as a base, to obtain high molecular weight precursor polymers. After thermal conversion of the precursor polymers into the fully conjugated systems, the solubility of the polymers has been examined. The polar nonionic side chains of MTEMP-PPV and BTEMP-PPV render the PPV backbone soluble in a variety of solvents, including alcohols and even water, making these polymers suitable candidates to be used in optoelectronic devices that can be processed from environmentally friendly solvent systems.  相似文献   

9.
A series of both imidazolium- and triazolium-based unsymmetric dicationic salts with alkyl and polyfluoroalkyl substituents were prepared and characterized. Most of them can be classified as ionic liquids (MP < 100 degrees C). Key physical properties, such as melting point, thermal stability, density, and solubility in common solvents were determined and were compared with those of the related monocationic imidazolium- or triazolium-based salts. The effects of anions and substituents bonded to the triazolium and imidazolium cations on these properties were examined. 1-(3-Butyl-imidazolium-1-yl)methylene-(4-butyl-1,2,4-triazolium diiodide) (2d), the precursor of 1-(3-butylimidazolium-1-yl)methylene-(4-butyl-1,2,4-triazolium) bi[bis(trifluoromethanesulfonyl)amide] (3d), reacted with Pd(OAc)(2) at 120 degrees C to generate a binuclear palladium(II) dicarbene complex. The palladium(II) complex was characterized by single-crystal X-ray diffraction analysis and was used as a catalyst precursor for palladium-catalyzed Heck cross-coupling reactions in 3d. Preliminary results show that 3d could serve as both the solvent and catalyst support in the catalytic reactions.  相似文献   

10.
Adsorption and interfacial properties of model methyl-capped nonionic surfactants C8E4OMe [C8H17O(C2H4O)4CH3] and C10E4OMe [C10H21O(C2H4O)4CH3] were studied in water and water/ethylene glycol mixtures as well as pure ethylene glycol. Critical micellar concentrations (cmc's), surface tensions, and surface excess were determined using surface tension (ST) and neutron reflection (NR) as a function of solvent type and surfactant tail length. The ST results show a strong dependence on solvent type in terms of cmc. The NR data were analyzed using a single-layer model for the adsorbed surfactant films. Surprisingly, the adsorption parameters obtained in both water and pure ethylene glycol were very similar, and variations in film thickness or area per molecule are negligible in respect of the uncertainties. Similarly, for C10E4OMe, estimates for the free energies of adsorption and micellization show only a weak solvent dependence. These results suggest that for such model nonionic surfactants dilute solution properties are dictated by solvophobicity, which is quite similar for this class of water, glycol, and water-glycol mixtures. More specifically, the nature of the adsorption layer appears to be hardly affected by the type of solvent subphase. The findings highlight the significance of solvophobicity and show that model nonionic surfactants can behave very similarly in hydrogen-bonding glycol solvents and water.  相似文献   

11.
Powell KT  Cheng C  Wooley KL 《Macromolecules》2007,40(13):4509-4515
Amphiphilic hyperbranched fluorohomopolymer (M(n) = 9.06 kDa, M(w)/M(n)= 1.90) and fluorocopolymer (M(n) = 17.2 kDa, M(w)/M(n)= 2.50) with tri(ethylene glycol) units incorporated at the molecular level were synthesized by atom transfer radical self-condensing vinyl homopolymerization of an inimer, 4-[oxy(tri(ethylene glycol))bromoisobutyryl]-2,3,5,6-tetrafluorostyrene, and copolymerization of the inimer with 2,3,4,5,6-pentafluorostyrene (1:3, inimer:monomer), using 2,2'-bipyridine together with CuCl/CuCl(2) as the ligand/catalyst/deactivator system. The structure and composition of the fluoropolymers were characterized by (1)H, (13)C, and (19)F NMR spectroscopies. As detected by thermogravimetric analyses, the homopolymer and the copolymer had thermal stability up to 175 °C and 210 °C, respectively. Differential scanning calorimetry revealed a glass transition temperature of -19 °C for the homopolymer and 20 °C for the copolymer. Solubility tests indicated that both polymers were soluble in a broad range of organic solvents, and the presence of tri(ethylene glycol) units resulted in the formation of water dispersible micelles from each of the polymers.  相似文献   

12.
Poly(oligo(ethylene glycol) methacrylate) (POEGMA) block poly(methyl methacrylate) (PMMA) brushes were synthesized on the silicon wafer surfaces by the surface-initiated atom transfer radical polymerization (ATRP) method. Atomic force microscopy, ellipsometry, and water contact angle methods were employed to study the surface morphology and stimulus-response behavior. It was found that simple solvent treatments could induce phase segregation of the POEGMA and PMMA segments thus introducing nanoscale patterns. The feature size could be less than 10 nm and was tunable on the nanoscale. Various patterns including spherical aggregates, wormlike aggregates, stripe patterns, perforated layers, and complete overlayers were obtained through adjusting the upper block layer thickness. These patterns could switch between the different morphologies reversibly after the treatment with selective solvents.  相似文献   

13.
Solubility of systems involving four different molecular weights of poly(ethylene glycol) (PEG) in tetrahydrofuran (THF), chloroform, dimethylsulfoxide (DMSO), methanol and water have been investigated by different algorithmic approaches as the mathematical application of the “like dissolves like” principle. In this study, the solubility parameters and their components for PEG and solvents have been evaluated by using of atomic group contribution methods; Small, van Krevelen-Hoftyzer (VKH), Hoy and Breitkreutz methods, respectively. Then their 2-dimensional graphs (Bagley, Henry and Hoernschemeyer diagrams) and 3-dimensional graph (Hansen diagram) have been drawn by creating the solubility profiles of the polymer in selected solvents. The dissolving capability of these solvents has been discussed. In addition the solubility parameters have been calculated by use of the van der Waals volume in the selected molecule or repeating unit of the polymer instead of the molar volume which is used in atomic group contribution methods (Askadskii approach). Surface tensions of the polymer and solvent systems have been calculated with this method and solubility criteria of PEG have been explained after a serial calculation steps. In addition, influence of molecular weight of PEG on solubility has been also analyzed. As a consequence of algorithmic calculations, THF has been determined as the best solvent whereas water is found to be the weakest solvent for polymer/solvent systems.  相似文献   

14.
In this work, the intrinsic viscosities of poly(ethylene glycol) with a molar mass of 20 kg⋅mol−1 were measured in water/1-propanol solutions from 283.1 to 313.1 K. The expansion factors of the polymer chains were calculated from the intrinsic viscosity data. The thermodynamic parameters entropy of dilution parameter, the heat of dilution parameter, theta temperature, polymer–solvent interaction parameter and second osmotic virial coefficient were derived from the temperature dependence of the polymer chain expansion factor. The thermodynamic parameters indicate that mixtures of water/1-propanol become weaker solvents for poly(ethylene glycol) with increasing temperature. Also, the thermodynamic parameters indicate that the solvent ability of mixed water/1-propanol for poly(ethylene glycol) is less than that of pure water.  相似文献   

15.
We have developed a method for integrating the self-assembling tobacco mosaic virus capsid into hydrophobic solvents and hydrophobic polymers. The capsid was modified at tyrosine residues to display an array of linear poly(ethylene glycol) chains, allowing it to be transferred into chloroform. In a subsequent step, the capsids could be transferred to a variety of hydrophobic solvents, including benzyl alcohol, o-dichlorobenzene, and diglyme. The thermal stability of the material against denaturation increased from 70 °C in water to at least 160 °C in hydrophobic solvents. With a view toward material fabrication, the polymer-coated TMV rods were also incorporated into solid polystyrene and thermally cast at 110 °C. Overall, this process significantly expands the range of processing conditions for TMV-based materials, with the goal of incorporating these templated nanoscale systems into conductive polymer matrices.  相似文献   

16.
The solubility of ca. 5.0 nm gold nanoparticles was studied systematically as a function of ligand shell and solvent. The ligands were octane-, decane-, dodecane- and hexadecanethiols; the solvents were the n-alkanes from hexane to hexadecane and toluene. Supernatant concentrations in equilibrium with precipitated superclusters of nanoparticles were measured at room temperature (23 °C) with UV-Vis spectrophotometry. The solubility of nanoparticles ligated with decane- and dodecanethiol was greatest in n-decane and n-dodecane, respectively. In contrast, the solubility of nanoparticles ligated with octane- and hexadecanethiol showed decreasing solubility with increasing solvent chain length. In addition the solubility of the octanethiol ligated system showed a nonmonotonic solvent carbon number functionality with even numbered solvents being better solvents than neighboring odd numbered solvents.  相似文献   

17.
The enthalpies of solution of 1-pentanol, 1-hexanol and 1-heptanol and water were determined in formamide and in ethylene glycol, at 25‡C, by macrosolution calorimetry. The observed enthalpies of solution for the n-alcohols are positive in the two solvents, and of similar magnitude. The enthalpy of solution of water is positive in formamide, and negative in ethylene glycol. From the enthalpies of solution, the enthalpies of solvation and the enthalpies of transfer for organic solvent↿ water were calculated. Using our values and literature data for alkanols, it was possible to see that both the enthalpies of solution and the enthalpies of solvation presented a constant CH2 increment for the entire series, in contrast with their behavior in water. The methylene increments for these properties in different solvents are compared with parameters considered to reflect the cohesive energy of the solvent.  相似文献   

18.
An experimental procedure for the interrelation of standard electrode potential series in different solvents is described. The standard molar potentials at 25°C of the cesium amalgam electrode in water, ethylene glycol, and methanol are ?1.950, ?1.881, and ?1.800 V, respectively, with ultimate reference to NHE in water. The net contribution of the solvent to the liquid junction potential at the junctions water-ethylene glycol, water-methanol, and methanol-ethylene glycol is 0.028, 0.007, and 0.021 V, respectively (the positive side of the “solvent” junction potential being indicated by the first solvent mentioned for each pair).  相似文献   

19.
Electrochemical studies were performed using Ni electrodes in solutions of a mixture of ethylene glycol or of γ-butyrolactone with 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. The aim of the study was to evaluate the use of these systems in electrochemical double-layer capacitor. Cyclic voltammetry experiments showed a potential range at which the Ni electrode behaved as a polarizable electrode. Ni oxidizes at high anodic potentials. Inside the potential range without electrochemical activity, the capacitance and the solution resistance, which were evaluated by impedance electrochemical spectroscopy, were compared for the two solutions tested. Conductivity measurements of the electrolytes with different compositions were also acquired. The results of cyclic voltammetry indicated that the Ni has a wide electrochemical window and low current peak densities of oxidation in the γ-butyrolactone medium than in ethylene glycol medium. The γ-butyrolactone and 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid solutions had the highest conductivity values. Decreased 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid content in different solvent mixtures resulted in an increase in the capacitance value at the Ni/electrolyte interface. The highest capacitance values were obtained for Ni in ethylene glycol and 1-n-butyl-3-methylimidazolium tetrafluoroborate medium.  相似文献   

20.
Physical solvents such as ethylene glycol (EG), diethylene glycol (DEG), and triethylene glycol (TEG) are commonly used in wet gas dehydration processes with TEG being the most popular due to ease of regeneration and low solvent losses. Unfortunately, TEG absorbs significantly more hydrocarbons and acid gases than EG or DEG. Quantifying this amount of absorption is therefore critical in order to minimize hydrocarbon losses or to optimize hydrocarbon recovery depending on the objective of the process. In this article, a new correlation that fully covers the operating ranges of TEG dehydration units is developed in order to determine the solubility of light alkanes and acid gases in TEG solvent. The influence of several parameters on hydrocarbon and acid gas solubility including temperature, pressure, and solvent content is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号