首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes the reaction of the phosphine-protected Au nanoparticle Au(55)(PPh(3))(12)Cl(6) (1, "Au55") with hexanethiol (2) and other thiols. The voltammetry of the reaction product 2 displays a well-defined pattern of peaks qualitatively reminiscent of Au(38) nanoparticles, but with quite different spacing (0.74 +/- 0.01 V) between the potentials of initial oxidation and reduction steps (electrochemical gap). Correction of this "molecule-like" gap for charging energy indicates a HOMO-LUMO gap energy of about 0.47 V. Voltammetry of the products (3 and 4) of reaction of 1 with C(3)H(7)SH and PhC(2)H(4)SH, respectively, is similar. Laser desorption/ionization mass spectrometry (LDI-MS) shows that 2 contains a high proportion of a core mass in the 14-15 kDa range, which is proposed to be Au(75). UV-vis spectra of 2-4 are relatively featureless, similar to previous reports of thiolate-protected Au(75) nanoparticles. HPLC analysis of 2 shows a Au(75) content of ca. 73%; the electrochemical purity estimate is also high, about 55%. Combining the mass spectrometric result with thermogravimetric analysis of 2 leads to a preliminary formulation Au(75)(SC(6)H(13))(40). This Au(75) synthesis complements a previous Brust-type synthesis and is unusual in the apparent provocation in the reaction of an increase in core size.  相似文献   

2.
In this report, first use of size-selected gold nanoparticles (AuNPs) as matrixes for matrix assisted laser desorption/ionization (MALDI) is described for peptides and proteins. In comparison with conventional organic acid MALDI matrixes, the optimum matrix-to-analyte ratio with AuNP matrixes is reduced by 10-14 orders of magnitude. Significant differences in the relative abundances of the ions observed in positive and negative mode MALDI-time-of-flight mass spectrometry (TOFMS) are revealed as the AuNP size distribution is decreased from 10 to 2 nm, whereby 2-nm AuNPs exhibit quantum confinement effects prevalent in quantum dots. AuNP matrixes allow for selective analyte ionization, as demonstrated in the selective MALDI-TOFMS of phosphotyrosine in a background of phosphoserine and phosphothreonine peptides.  相似文献   

3.
Terephthalic acid was recycled from waste PET bottles with a basic hydrolysis technique and characterized with UV and FTIR spectroscopy. Copper-based metal–organic framework Cu(BDC) was synthesized at room temperature without any additive; two different temperatures were chosen to activate the obtained material. Characterization studies were performed using XRD, N2 physisorption, STEM and EDX. The obtained material was tested as a catalyst for the reduction of methyl orange with NaBH4 in aqueous solutions. Thermal activation at 160 °C proved to be mandatory for catalytic activity; although higher temperature activation did not cause significant enhancement. Rapid dye removal was monitored by continuous photometry at λ max. The results were quite satisfactory (about 85% removal in 5 min); even higher than the published results for precious metal (i.e., Au, Pt and Ag) nanoparticles. In an increased reaction scale, UV–visible spectra and mass spectrum were recorded to help elucidating the possible reaction mechanism. In addition, recycling experiment were performed in 100-ml scale without any kind of re-activation (washing or drying) to show the ability of Cu(BDC) as a stable catalyst for reductive dye removal (and probably similar reactions as well).  相似文献   

4.
A multi-pyrazolyl cyclotriphosphazene containing polymerizable group N(3)P(3)(3,5-Me(2)Pz)(5)(O-C(6)H(4)-p-C(6)H(4)-p-CH=CH(2)) (2) has been prepared from the corresponding chloro derivative N(3)P(3)Cl(5)(O-C(6)H(4)-p-C(6)H(4)-p-CH=CH(2)) (1). The X-ray structures of 1 and 2 have been determined. Compound 2 undergoes ready metalation with CuCl(2) to afford N(3)P(3)(3,5-Me(2)Pz)(5)(O-C(6)H(4)-p-C(6)H(4)-p-CH=CH(2)).CuCl(2) (3). Model compound N(3)P(3)(3,5-Me(2)Pz)(5)(O-C(6)H(4)-p-CHO).CuCl(2) (6) has been prepared and characterized by spectroscopy and X-ray crystallography. In this compound, the coordination around copper is distorted trigonal bipyramidal, and the cyclotriphosphazene coordinates in a non-gem N(3) mode. Compound 2 has been copolymerized with divinylbenzene to afford cross-linked multisite coordinating polymer CPPL which is readily metalated with CuCl(2) to afford copper-containing polymer CPPL-Cu. The coordination environment around copper in CPPL-Cu has been evaluated by obtaining its EPR, optical, and IR spectra and comparing them with those of model compounds 3 and 6. The utility of CPPL-Cu as a heterogeneous catalyst has been demonstrated in the phosphate ester hydrolysis involving three model phosphate esters: p-nitrophenyl phosphate (pNPP), bis(p-nitrophenyl) phosphate (bNPP), and 2-(hydroxypropyl)-p-nitrophenyl phosphate (hNPP). In all of these reactions, a significant rate enhancement of ester hydrolysis is observed. Detailed kinetic analyses to evaluate Michaelis-Menten parameters have also been carried out along with experiments to elucidate the effect of pH, solvent, and temperature on the rate of hydrolysis. Recycling experiments on the hydrolysis of pNPP with CPPL-Cu shows that it can be recycled several times over without affecting the rates.  相似文献   

5.
Self-assembled thiol monolayers bound to single-crystal Au(111) surfaces containing a terminal olefin have been prepared and used to monitor electrochemically the cross-metathesis (CM) between the surface and an olefin-terminated ferrocenyl (Fc) derivative from solution over time. Mixed SAM surfaces were prepared by first adsorbing a diluent for 2 days followed by the olefinic alkanethiol for known adsorption time intervals; three diluents of varying length were used. The oxidation peak areas from the voltammetry show the CM reaction yields a maximum amount of product at 100-150 min. Beyond this time, thiol desorption is apparent and the Fc oxidation peaks diminished. A kinetic simulation of the interfacial reactions involving CM and desorption reactions are described and aided in the interpretation of the voltammetric responses. The length of the diluent and the coverage of surface olefins were important factors in limiting undesirable self-CM reactions on the surface, and a model of the relationship between the diluent and surface concentration of olefin is described. This study shows that attention to monolayer formation and reaction conditions are important parameters when maximizing CM yields on surfaces.  相似文献   

6.
The development of a visible light-mediated atom transfer radical addition (ATRA) of perfluoroalkyl iodides to ethynyl-, vinyl- and allyl-MIDA boronates using the reductive and oxidative quenching of [Ru(bpy)3]Cl2 is described. Using an operationally simple and mild protocol, the corresponding MIDA boronates containing perfluoroalkyl groups were obtained in moderate to high yields. The structures of three products were confirmed by single crystal X-ray diffraction studies.  相似文献   

7.
A new colorimetric sensor for sensing Hg2+ in a high-salinity solution has been developed using gold nanoparticles (AuNPs) decorated with 3-mercaptopropionate acid (MPA) and adenosine monophosphate (AMP). Because of the high negative charge density of AMP on each AuNP surface, MPA/AMP-capped AuNPs are well dispersed in a high-salt solution. In contrast, the aggregation of MPA-capped AuNPs was induced by sodium ions, which shield the negative charges of the carboxylic groups of MPA. Through the coordination between the carboxylic group of MPA and Hg2+, the selectivity of MPA/AMP-capped AuNPs for Hg2+ in a high-salt solution is remarkably high over that of the other metals without the addition of a masking agent or a change in the temperature. We have carefully investigated the effect of the AMP concentration on the stability and sensitivity of MPA/AMP-capped AuNPs. Under optimum conditions, the lowest detectable concentration of Hg2+ using this probe was 500 nM on the basis of the measurement of the ratio of absorption at 620 nm to that at 520 nm. The sensitivity to Hg2+ can be further improved by modifying the MPA/AMP-capped AuNPs with highly fluorescent rhodamine 6G (R6G). By monitoring the fluorescence enhancement, the lowest detectable concentration of Hg2+ using R6G/MPA/AMP-capped AuNPs was 50 nM.  相似文献   

8.
An antibody-free diagnostic reagent has been developed based on the aggregation-induced colorimetric change of Ni(II)NTA-functionalized colloidal gold and silver nanoparticles. This diagnostic strategy utilizes the high binding affinity of histidine-rich proteins with Ni(II)NTA to capture and cross-link the histidine-rich protein mimics with the silver and gold nanoparticles. In model studies, the aggregation behavior of the Ni(II)NTA nanoparticles was tested against synthetic targets including charged poly(amino acid)s (histidine, lysine, arginine, and aspartic acid) and mimics of Plasmodium falciparum histidine-rich protein 2 (pfHRP-II). Aggregation of the nanoparticle sensor was induced by all of the basic poly(amino acid)s including poly(l-histidine) within the pH range (5.5-9.0) tested, which is likely caused by the coordination between the multivalent polymer target and Ni(II)NTA groups on multiple particles. The peptide mimics induced aggregation of the nanoparticles only near their pK(a)'s with higher limits of detection. In addition, monomeric amino acids do not show any aggregation behavior, suggesting that multiple target binding sites are necessary for aggregation. Long-term stability studies showed that gold but not silver nanoparticles remained stable and exhibited similar aggregation behavior after 1 month of storage at room temperature and 37 °C. These results suggest that Ni(II)NTA gold nanoparticles could be further investigated for use as a sensor to detect histidine-rich proteins in biological samples.  相似文献   

9.
SpectroelectrochemicalStudiesontheInteractionsofComplexesofCu(phen)2+2andCu(bpy)2+2withDNAZHAOGuang-chao,ZHUJun-jieandCHENHon...  相似文献   

10.
The selective growth of Au nanoparticles on (111) facets of truncated octahedral and cuboctahedral Cu(2)O crystals has been achieved by exploiting the differences in the standard potential between AuCl(4)(-)/Au and Cu(2+)/Cu(2)O pairs and in surface energies between (111) and (100) planes. The density and size of Au nanoparticles can be controlled by tuning the concentration of the gold precursor. Truncated octahedral Cu(2)O-Au nanocomposites have a 10 times higher electrochemically catalytic activity toward H(2)O(2) reduction than do pure Cu(2)O crystals. The enhanced catalysis may be derived from the polarization of Au NPs at the interface, which makes Cu(2)O more active for H(2)O(2) reduction.  相似文献   

11.
In a previous paper [Beyvers et al., J. Chem. Phys. 124, 234706 (2006)], the possibility to mode and state selectively excite various vibrational modes of a CO molecule adsorbed on a dissipative Cu(100) surface by shaped IR pulses was examined. Reduced-dimensionality models with stretching-only coordinates were employed to do so. This model is now extended with the goal to include rotational modes. First, we present an analysis of the bound states of the adsorbed CO molecule in full dimension; i.e., six-dimensional eigenstates are obtained by diagonalizing the six-dimensional Hamiltonian containing the semiempirical potential of Tully et al. [J. Vac. Sci. Technol. A 11, 1914 (1993)]. This is achieved by using a contracted iterative eigensolver based on the coupled two-term Lanczos algorithm with full reorthogonalization. Reduced-dimension subsystem eigenvectors are also computed and then used to study the selective excitation of the molecule in the presence of dissipation within the density matrix formalism for open systems. In the density matrix propagations, up to four degrees of freedom were included, namely, r (the C-O distance), Z (the molecule-surface distance), and phi and theta (the azimuthal and polar angles of the molecular axis with respect to the surface). Short, intense laser pulses are rationally engineered and further refined with optimal control theory, again with the goal for mode and state selective excitation. Also, IR-laser induced desorption is studied. For the calculations, the previous two-mode (r,Z) dipole surface is extended to include the angular dependence and the model for the coupling of the molecule to the surface electronic degrees of freedom is refined.  相似文献   

12.
Dong  Yangjun  Ding  Lingling  Jin  Xin  Zhu  Ningning 《Mikrochimica acta》2017,184(9):3357-3362
Microchimica Acta - The authors describe a selective and sensitive method for the colorimetric determination of Cd(II) by using silver nanoparticles capped with chalcone carboxylic acid (CCA) as an...  相似文献   

13.
This article describes the homopolymerization of methyl acrylate (MA) and its attempted copolymerization with ethylene using three single‐site catalysts. The primary catalyst under investigation is formed from a bis(imino)pyridine iron(II) chloride with methylaluminoxane ( 1 ), which is compared with bis(4,5,6,7‐tetrahydro‐1‐indenyl)zirconium dimethyl/tris(pentafluorenyl)borane) ( 2 ), and a P,O‐chelated nickel(II) enolate catalyst ( 3 ). Catalyst ( 1 ) leads to the highest activities exceeding those of catalyst ( 2 ) by a magnitude, whereas catalyst ( 3 ) results in formation of no polymer. The kinetics of the polymerizations and the effect of the Al/Fe‐ratio and temperature on the activity and molecular weight of the polymers have been determined. In the ethylene/MA copolymerization trials, catalyst ( 1 ) produces a blend of the two homopolymers, polymethyl acrylate (PMA) and polyethylene. Remarkably, using catalyst ( 1 ) it is possible to produce polymer blends with up to 52% PMA at relatively high activities. The polymerization kinetics has been determined based on the directly measured uptake of ethylene during the runs. NMR spectroscopy, DSC and GPC measurements have been used as efficient methods to prove that polymer blends instead of true copolymers were formed. Finally, some conclusions about the polymerization mechanism will be drawn. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5542–5558, 2008  相似文献   

14.
The new Cu/SiO2 catalyst is developed by the atomic layer epitaxy (ALE) method. The ALE-Cu/SiO2 catalyst with high dispersion and nanoscale Cu particles appears to have very different catalytic properties from those of the typical Cu-based catalysts, which have satisfactory thermal stability to resist the sintering of Cu particles at 773 K. Due to the formation of small Cu particles, the ALE-Cu/SiO2 can strongly bind CO and give high catalytic activity for CO2 converted to CO in the reverse water-gas-shift reaction. The catalytic activity decreases in the order of 2.4% ALE-Cu/SiO2 =... 2% Pt/SiO2 > 2% Pd/SiO2 > 10.3% IM-Cu/SiO2.  相似文献   

15.
The effect of CuSCN as a catalyst in atom‐transfer radical polymerization (ATRP) was investigated. CuSCN can successfully be used for the ATRP of MMA. Substituted bipyridines as well as imines can be used to stabilize the copper complex in solution. CuSCN induces faster polymerization compared to CuBr and CuCl when tosylchloride is used as the initiator. However, the polydispersity is larger than that obtained in the cases of CuCl and CuBr.  相似文献   

16.
The doping effect of Cu on the self-assembly film of melamine on an Au(111) surface has been investigated with scanning tunneling microscopy (STM). The evaporated Cu adatoms occupy the positions underneath the amino groups and change the hydrogen bonding pattern between the melamine molecules. Accordingly, the self-assembly structure has changed stepwise from a well-defined honeycomb into a track-like and then a triangular structure depending on the amount of Cu adatoms. The interaction between Cu adatom and melamine is moderate thus the Cu adatoms can be released upon mild heating to around 100℃. These findings are different from previous observations of either the coordination assembly or the physically trapped metal adatoms.  相似文献   

17.
18.
Huang  Xinan  Jiang  Hong  Li  Yongxin  Sang  Lijia  Zhou  Huipeng  Shahzad  Sohail Anjum  Ibupoto  Zafar Hussain  Yu  Cong 《Mikrochimica acta》2017,184(7):2325-2331
Microchimica Acta - A sensitive and selective luminescent nanoprobe (referred to as DEPN) is designed for the determination of Cu(II) ions. DEPN shows two emission peaks, one at 602 nm and...  相似文献   

19.
We report a detailed in situ X-ray diffraction study of the influence of chloride on the atomic structure evolution at the solid-electrolyte interface during the selective dissolution of Cu from a Cu3Au(1 1 1) surface immersed in 0.1 M H2SO4. We disclose that the formation of the initial ultrathin Au-rich (1 1 1) with an inverted stacking sequence, as recently observed at Cu3Au(1 1 1) in contact with pure 0.1 M H2SO4, is strongly influenced by adding 5 mM HCl. The main finding is a negative shift of about 150 mV of the critical potential at which the ultra-thin Au-rich layer transforms into thicker Au islands. The presented results support the view that it is not a thermodynamic driving force, but rather the rate of surface diffusion that dominates the formation of the structures of the metallic layer.  相似文献   

20.
Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号