首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2022,33(6):3263-3266
Understanding the impact of substituents on the quantum interference effect at single molecule scale is of great importance for the design of molecular devices. In this work, three platinum(II) complexes with –H, –NH2 and –NO2 groups on conductive backbones were designed and synthesized. Single-molecule conductance, which was measured using scanning tunnelling microscope break junction (STM-BJ) technique, demonstrated a conductance freeze phenomenon under the variation of substituents. Theoretical study revealed that, despite the electronic effect of the substituents shifting the energy level of molecular orbital, the quantum interference effect vanished the influence of electronic effect on the conductance and eventually leaded to the conductance freeze.  相似文献   

2.
Two new stepladder conjugated polymers, that is, poly(7,7,15,15‐tetraoctyldinaphtho[1,2‐a:1′,2′‐g]‐s‐indacene) (PONSI) and poly(7,7,15,15‐tetra(4‐octylphenyl)dinaphtho[1,2‐a:1′,2′‐g]‐s‐indacene) (PANSI) with alkyl and aryl substituents, respectively, have been synthesized and characterized. In comparison with poly(indenofluorene)s, both polymers have extended conjugation at the direction perpendicular to the polymer backbone because of the introduction of naphthalene moieties. The emission color of the polymers in film state is strongly dependent on the substituents. While PONSI emits at a maximum of 463 nm, PANSI with the same backbone but aryl substituents displays dramatically redshifted emission with a maximum at 494 nm. Both polymers show stable photoluminescence spectra while annealing at 200 °C in inert atmosphere. The PONSI‐based devices with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al turn on at 3.7 V, and emit at a maximum of 461 nm with the CIE coordinates of (0.19, 0.26), a maximum luminance efficiency of 1.40 cd/A, and a maximum brightness of 2036 cd/m2 at 13 V. Meanwhile, the emission color of the devices is independent of driving voltage and keeps unchanged during the continuous operation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4866–4878, 2008  相似文献   

3.
Recently, metastable‐state photoacids have been widely used to control proton transfer in numerous chemical and biological processes as well as applications with visible light. Generally, substituents have a great influence on the photochemical properties of molecules, which will further affect their applications. Yet, the effects of substituents on metastable‐state photoacids have not been studied systematically. In this work, 16 metastable‐state photoacid derivatives were designed and synthesized on the basis of substituents having a large range of σ–π electron–donor–acceptor capabilities. The effects of substituents on the color display [or maximum absorption band(s)], solubility, pKa values, dark/photoacidity, photosensitivity, and relaxation kinetic(s) were investigated in detail. This study will be helpful for the targeted design and synthesis of promising photoacids and the application of their photocontrolled proton‐release processes in functional materials/devices.  相似文献   

4.
在合成两种具有不同取代基的吡唑啉衍生物PD1和PD2的基础上,研究了不同取代基效应对其光致发光和电致发光性质的影响.结果表明甲氧基取代的化合物PD2较N,N-二甲氨基取代的化合物PD1具有更高的荧光量子产率.而在作为有机电致发光器件的掺杂染料,当其器件结构为ITO/TPD/TPBI:2% PD/TP-BI/Mg:Ag时,PD1掺杂染料却有着较PD2更高的电致发光效率.当器件的电流密度为420 mA/cm2时,掺杂染料为PD1的器件在487 nm处发射蓝光,其发光亮度为1224 cd/m2.  相似文献   

5.
A series of new blue-phosphorescent iridium(III) complexes 1-14 with ligands of 2-phenylimidazo[1,2-a]pyridine (pip) derivatives were successfully prepared, and their electrochemical, photophysical, and electroluminescent (EL) properties were systematically investigated. It was found that the emission maxima are significantly dependent on the substituents on the phenyl ring in the range of 489-550 nm. For instance, electron-withdrawing groups such as F and CF3 shift the emission maxima to shorter wavelengths by lowering the HOMO levels (complexes 4-8), whereas the extended pi-conjugation leads to bathochromic shifts (2, 3). To obtain further information about the frontier orbital, substitution effects on the imidazole part were also investigated here, and it was found that electron-withdrawing or -donating substituents on the imidazole ring affected the emission maxima (9, 557 nm; 10, 525 nm). These results including their oxidation potentials suggest that the HOMO of the pip-based complex is a mixture of Ir-d, phenyl-pi, and imidazole-pi orbitals. From this viewpoint, combination of electron-withdrawing substituents on the phenyl ring with the use of another ancillary ligand enabled further blue shifts (13, 468, 499 nm; 14, 464, 494 nm). This new system based on pip is one of the rare examples of iridium complexes whose emissions can be tuned to the blue region. Preliminary polymer light-emitting devices (PLEDs) employing the Ir complexes were fabricated, and the devices showed moderate EL efficiencies.  相似文献   

6.
Fused polycyclic indeno[1,2-b]fluorene derivatives with aryl substituents at the 6,12-positions have been prepared as a potential antiaromatic 20π electronic system. They showed strong absorptions in the visible region and amphoteric redox properties. The quinoid-type molecular structures were revealed by X-ray crystal-structure analysis, which indicated that the bond lengths of the quinoid unit depend on the aryl substituents. Whereas nucleus-independent chemical shift NICS(1) calculations indicate the antiaromatic nature of the s-indacene core, they have higher stability than substituted acene derivatives. The derivatives with difluorophenyl or anthryl groups were stable in solution. Vapor-deposited thin films showed ambipolar carrier transportation in the field-effect transistor devices.  相似文献   

7.
《Tetrahedron》2019,75(38):130514
This study presents the synthesis, characterization, and electrochemical properties of four new dialkoxymethanofullerenes, as well as their performance in organic solar cells (OSCs) devices. Dialkoxymethanofullerenes were synthesized in 27%–32% yield by thermolysis of dialkoxyoxadiazolines and reaction with C60 under reflux in toluene. The prepared compounds were then characterized and used for the first time as electron-acceptor materials in thin-film bulk heterojunction OSCs with PBTZT-stat-BDTT-8 as the electron donor material. The devices made with ethoxy-hexyloxymethanofullerene and methoxy-hexyloxymethanofullerene exhibited optimal power conversion efficiencies (PCEs) of 3.79% and 4.65%, with open-circuit voltage of 0.832 and 0.831 V, respectively. In contrast, the devices made with ethoxy-ethoxymethanofullerene and methoxy-ethoxymethanofullerene exhibited very low PCEs of <0.01% for both, indicating a large impact of the substituents on device performance.  相似文献   

8.
New 9,10-substituted anthracene derivatives were designed and synthesized for application as blue-emitting and hole-transporting materials in electroluminescent devices. They were characterized by H NMR, C NMR, FTIR, UV–vis, PL spectroscopy, and mass spectrometry. The theoretical calculation of three-dimensional structure and the energy densities of HOMO and LUMO states, as well as optical properties of these new obtained materials, supported the claim that they had non-coplanar structures. Their optical, thermal, and electrochemical properties could be tuned by varying the peripheral substituents. All of them were electrochemically and thermally stable molecules. Materials having electron donating triphenylamine as peripheral substituents showed promising potential as both blue light-emitting materials and hole-transporting materials for electroluminescent devices. Efficient blue and Alq3-based green OLEDs with maximum luminance efficiencies and CIE coordinates of 1.65 cd/A and (0.15, 0.16) and 6.25 cd/A and (0.26, 0.49) were achieved, respectively.  相似文献   

9.
Dithienogermole (DTG) has been applied as a useful building unit of optical/semiconducting materials for organic optoelectronic devices because of its extended conjugation, high chemical stability, and good emissive properties. Although DTG has two substituents on the Ge atom, the substituents have been limited to simple alkyl and aryl groups in previous work. In this work, to further uncover the new functionalities of this useful building unit, various π-conjugated groups were introduced on Ge of DTG. It was expected that the introduction of π-conjugated groups would give rise to efficient energy transfer between the substituents and the DTG core, which are in proximity and linked by a Ge atom. The thus-prepared DTG compounds with fluorene, terthiophene, and pyrene units on Ge possessed well-separated frontier orbitals on the substituents and the DTG core, as proved by the absorption spectra and DFT calculations. The substituted DTG derivatives showed clear emission only from the energy acceptor even though the energy donor was photoexcited. This indicated the highly efficient energy transfer in these compounds. We also prepared more π-extended compound DTGFl2-Ph with phenyl groups on the DTG thiophene rings. DTGFl2-Ph showed strong emission in the visible region with efficient energy transfer properties. These results clearly indicate the potential application of the present DTG system as optical functional materials.  相似文献   

10.
Fused polycyclic indeno[1,2‐b]fluorene derivatives with aryl substituents at the 6,12‐positions have been prepared as a potential antiaromatic 20π electronic system. They showed strong absorptions in the visible region and amphoteric redox properties. The quinoid‐type molecular structures were revealed by X‐ray crystal‐structure analysis, which indicated that the bond lengths of the quinoid unit depend on the aryl substituents. Whereas nucleus‐independent chemical shift NICS(1) calculations indicate the antiaromatic nature of the s‐indacene core, they have higher stability than substituted acene derivatives. The derivatives with difluorophenyl or anthryl groups were stable in solution. Vapor‐deposited thin films showed ambipolar carrier transportation in the field‐effect transistor devices.  相似文献   

11.
Together with the more intuitive and commonly recognized conductance mechanisms of charge‐hopping and tunneling, quantum‐interference (QI) phenomena have been identified as important factors affecting charge transport through molecules. Consequently, establishing simple and flexible molecular‐design strategies to understand, control, and exploit QI in molecular junctions poses an exciting challenge. Here we demonstrate that destructive quantum interference (DQI) in meta‐substituted phenylene ethylene‐type oligomers (m‐OPE) can be tuned by changing the position and conformation of methoxy (OMe) substituents at the central phenylene ring. These substituents play the role of molecular‐scale taps, which can be switched on or off to control the current flow through a molecule. Our experimental results conclusively verify recently postulated magic‐ratio and orbital‐product rules, and highlight a novel chemical design strategy for tuning and gating DQI features to create single‐molecule devices with desirable electronic functions.  相似文献   

12.
Light-emitting devices from the tris(2,2'-bipyridyl)ruthenium(II) complex [Ru(bpy)(3)(2+)] and new derivatives thereof were prepared. Due to the electrochemical nature of the device operation, single-layer devices in an ITO/ Ru(bpy)(3)(2+) complex + PMMA/Ag sandwich configuration achieved very high external quantum efficiencies. The derivatives of the Ru(bpy)(3)(2+) complex were designed and synthesized to inhibit self-quenching of the excited state by adding different alkyl substituents on the bipyridyl ligands. As a result, devices that contain these new Ru(bpy)(3)(2+) complexes show a higher photoluminescence and electroluminescence efficiency than devices made from the unmodified Ru(bpy)(3)(2+) complex. External quantum efficiencies up to 5.5% at brightnesses in the range of 10-50 cd/m(2) are reported. In addition, the response time of such devices (which is a result of the electrochemical operation) has been shortened dramatically. An "instantaneous" light emission is achieved for devices that employ smaller counterions such as BF(4)(-) to increase the ionic conductivity. Such a device shows a response time of less than 1 s to emit 10-20 cd/m(2) after the operating voltage of 2.4 V has been applied.  相似文献   

13.
Energy and electron transfer from frameworks of nanoporous or mesostructured materials to guest species in the nanochannels have been attracting much attention because of their increasing availability for the design and construction of solid photofunctional systems, such as luminescent materials, photovoltaic devices, and photocatalysts. In the present study, energy and electron-transfer behavior of dye-doped periodic mesostructured organosilica films with different host-guest arrangements were systematically examined. Fluorescent tetraphenylpyrene (TPPy)-silica mesostructured films were used as a host donor. The location of guest perylene bisimide (PBI) dye molecules, acting as an acceptor, could be controlled on the basis of the molecular design of the PBI substituent groups. PBI dyes with bulky substituents and polar anchoring groups were located at the pore surface with low self-aggregation, which induced efficient energy or electron transfer because of the close host-guest arrangement. However, PBI dye with bulky and hydrophobic substituents was located in the center of template surfactant micelles; the fluorescence emission from the host TPPy groups was hardly quenched when the host-guest distance was longer than the critical F?rster radius (ca. 4.5 nm). The relationship between the energy or electron-transfer efficiency and the location of guest species in the channels of mesostructured organosilica was first revealed by molecular design of the PBI substituents.  相似文献   

14.
Aluminum and zinc complexes of 4‐substituted 8‐hydroxyquinoline were used effectively as emissive materials in light‐emitting diodes (LED). The substituents chosen in this study were p‐methoxy‐2‐styryl, p‐diethylamino‐2‐styryl, and naphthalene‐2‐vinyl groups. Their emission spectra were red‐shifted with respect to that of aluminum tris(hydroxylquinolate) (Alq3) as a result of extending their π‐conjugation. All complexes formed amorphous glasses, which exhibited high thermal and electrical stability. Typical LED devices were fabricated by mixing the dyes with polyvinylcarbazole and spin‐coated to form thin films, which were sandwiched between ITO (indium tin oxide) and a metal electrode. These devices displayed yellow‐orange emissions with quantum efficiency ca. 0.4%.  相似文献   

15.
Fluorene is a classic three-membered polycyclic aromatic hydrocarbon, and it has been widely used in optoelectronic devices. Here we explore a simple and efficient strategy for the derivatization at the 2- and 3- positions in fluorene unit. By introducing different types of substituents, we design two pairs of 2,3-disubstituted fluorene isomers and use them as host materials for phosphorescent organic light-emitting diodes (PHOLEDs). The green PHOLEDs hosted by these fluorene derivatives realize high external quantum efficiencies (EQE) over 20 % with low efficiency roll-off. Particularly, the devices hosted by 2TRz3TPA and 2TPA3TRz achieve nearly 24 % EQE and 104 lm W−1 power efficiency. These results clearly demonstrate that the 2,3-disubstituted fluorene platforms are potentially useful for constructing host materials.  相似文献   

16.
Two synthetic methods of meso-aryl-substituted subporphyrins have been developed by means of the reaction of pyridine-tri-N-pyrrolylborane with a series of aryl aldehydes. One method relies on the condensation under Adler conditions with chloroacetic acid in refluxing 1,2-dichlorobenzene to afford subporphyrins in 1.1-3.2%, and the other is a two-step reaction consisting of the initial treatment of the two substrates with trifluoroacetic acid at 0 degrees C followed by air-oxidation in refluxing 1,2-dichlorobenzene to provide subporphyrins in up to 5.6% yield. 1H NMR studies indicate that phenyl and sterically unhindered substituents at the meso position of subporphyrins rotate rather freely even at -90 degrees C, whereas the rotation of meso-2,4,6-trimethoxyphenyl substituents is strictly prohibited even at 130 degrees C. The structures of six subporphyins have been revealed by X-ray crystallographic analysis to be all cone-shaped tripyrrolic macrocycles. Dihedral angles of meso-phenyl and sterically unhindered aryl substituents to the subporphyrinic core are rather small (38.3-55.7 degrees ) compared to those of porphyrin analogues, whereas those of meso-2,4,6-trimethoxy-substituted subporphyrins are large (68.7-75.7 degrees ). These rotational features of the meso-aryl substituents lead to their large influences on the electronic properties of subporphyrins, as seen for 4-nitrophenyl-substituted subporphyrin 14e that exhibits perturbed absorption and fluorescence spectra, depending upon solvents. Large solvent-polarity dependence of the fluorescence of 14e suggests the charge-transfer character for its excited state. Electrochemical and theoretical studies are performed to understand the electronic properties. Overall, meso-aryl-substituted subporphyrins are promising chromophores in future functional devices.  相似文献   

17.
Two-dimensional (2D) assemblies of alkoxy-substituted oligo(phenylene-ethynylene)s bearing different substituents adsorbed on highly oriented pyrolytic graphite (HOPG) were studied by using scanning tunneling microscopy. It was found that the introduction of different endgroups or a biethynylene linkage into oligo(phenylene-ethynylene)s can significantly change their 2D ordering on HOPG. The carboxylic endgroups can direct the conjugated oligomers to form ordered lines through intermolecular hydrogen bonding. The possibility of controlling the 2D assemblies of conjugated molecules is of importance in designing organic optoelectronic devices.  相似文献   

18.
A series of new benzimidazole derivatives were synthesized by the solid‐state condensation and direct sublimation (SSC‐DS) method and their physical properties were investigated. The reaction yields and product stability were significantly affected by the identity of the diamine and anhydride substituents. On the other hand, the substituents of the benzimidazole ring allowed fine tuning of the emission maxima, fluorescence quantum yields, and redox potentials. The HOMO–LUMO levels were estimated by cyclic voltammetry in film on indium tin oxide (ITO) and compared with values obtained by other methods. The described benzimidazoles showed high crystallinity, which is attributed to a high planarity and interactions between carbon and heteroatoms. These compounds showed n‐type semiconducting behavior in organic field‐effect transistors (OFETs). Optimized devices for fluorinated NTCBI (naphthalene tetracarboxylic bisbenzimidazole) showed respectable electron mobilities of ~10?2 cm2 V?1 s?1.  相似文献   

19.
The synthesis and photophysical properties are described for a series of porphyrin, phthalocyanine and pyrazinoporphyrazine derivatives which bear four or eight peripheral fluorenyl substituents as antennae. Representative examples are 5,10,15,20-tetra(9,9-dihexyl-9H-fluoren-2-yl)porphyrin (2), 5,10,15,20-tetrakis[4-(9,9-dihexyl-9H-fluoren-2-yl)phenyl]porphyrin (3), 2,3,9,10,16,17,23,24-octakis(9,9-dihexyl-9H-fluoren-2-yl)-29H,31H-phthalocyanine (8) and 2,3,9,10,16,17,23,24-octakis[4-(9,9-dihexyl-9H-fluoren-2-yl)phenyl]-29H,31H-tetrapyrazinoporphyrazine (9). Palladium-mediated Suzuki-Miyaura cross-coupling reactions have been key steps for attaching the substituents. The compounds are deep-red emitters: lambda(max)(em)=659 (3), 737 (8) and 684 nm (9). Their absorption and emission spectra, their fluorescence lifetimes and quantum yields are correlated with the structures of the macrocycles and the substituents. The solution fluorescence quantum yields of porphyrin derivatives substituted with fluorene (2-4) and terphenyl substituents (7) (Phi(f)=0.21-0.23) are approximately twice that of tetraphenylporphyrin. For phthalocyanine derivative 8, Phi(f) was very high (0.88). Specific excitation of the fluorene units of 8 produced emission from both of them (lambda(max)=480 nm) and also from the phthalocyanine core (lambda(max)=750 nm), indicating a competitive rate of energy transfer and radiative decay of the fluorenes. Organic light-emitting devices (OLEDs) were made by spin-coating techniques by using a polyspirobifluorene (PSBF) copolymer as the host blended with 3 (5 wt. %) in the configuration ITO/PEDOT:PSS/PSBF copolymer:3/Ca/Al. Deep-red emission (lambda(max)=663 nm; CIE coordinates x=0.70, y=0.27) was observed with an external quantum efficiency of 2.5 % (photons/electron) (at 7.5 mA cm(-2)), a low turn-on voltage and high emission intensity (luminance) of 5500 cd m(-2) (at 250 mA/ m(2)).  相似文献   

20.
Summary: Two novel conjugated isomeric hexathiophenes 6T1 and 6T2 bearing 5-methyl-2-thienyl substituents have been synthesized by Suzuki coupling and oxidative dimerization method. These isomers were characterized by 1H NMR, 13C NMR, elemental and mass analysis. The two hexamers show good solubility in common solvents and show almost identical UV-vis absorption spectra in solution with a maximum cantered at 387 nm. These materials bearing thienyl substituents in the sidechain are anticipated to provide better charge transport in devices and hold promise for use in organic field effect transistors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号