首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution behavior of iron(III) and iron(II) complexes of 5(4),10(4),15(4),20(4)-tetra-tert-butyl-5,10,15,20-tetraphenylporphyrin (H(2)tBuTPP) and the reaction with superoxide (KO(2)) in DMSO have been studied in detail. Applying temperature and pressure dependent NMR studies, the thermodynamics of the low-spin/high-spin equilibrium between bis- and mono-DMSO Fe(II) forms have been quantified (K(DMSO) = 0.082 ± 0.002 at 298.2 K, ΔH° = +36 ± 1 kJ mol(-1), ΔS° = +101 ± 4 J K(-1) mol(-1), ΔV° = +16 ± 2 cm(3) mol(-1)). This is a key activation step for substitution and inner-sphere electron transfer. The superoxide binding constant to the iron(II) form of the studied porphyrin complex was found to be (9 ± 0.5) × 10(3) M(-1), and does not change significantly in the presence of the externally added crown ether in DMSO (11 ± 4) × 10(3) M(-1). The rate constants for the superoxide binding (k(on) = (1.30 ± 0.01) × 10(5) M(-1) s(-1)) and release (k(off) = 11.6 ± 0.7 s(-1)) are not affected by the presence of the external crown ether in solution. The resulting iron(II)-superoxide adduct has been characterized (mass spectrometry, EPR, high-pressure UV/Vis spectroscopy) and upon controlled addition of a proton source it regenerates the starting iron(II) complex. Based on DFT calculations, the reaction product without neighboring positive charge has iron(II)-superoxo character in both high-spin side-on and low-spin end-on forms. The results are compared to those obtained for the analogous complex with covalently attached crown ether, and more general conclusions regarding the spin-state equilibrium of iron(II) porphyrins, their reaction with superoxide and the electronic structure of the product species are drawn.  相似文献   

2.
Aliphatic x,y-ionenes are polyelectrolytes in which x and y denote the numbers of methylene groups separating quaternary ammonium ions. They represent useful model substances for studying hydrophobic and charge effects in aqueous solutions. We used isothermal titration calorimetry to measure the enthalpies of mixing, ΔH(mix), of 3,3- and 6,6-ionene fluorides and bromides with low molecular weight salts (NaF, NaCl, NaBr, and NaI) at 298 K in water. The signs and magnitudes of the measured enthalpies depend on the hydrophobicity of the ionene and on the nature of the added salt. For example, addition of sodium fluoride to solutions of 3,3- and 6,6-ionene fluorides produced endothermic effects, while addition of sodium bromide to 3,3-ionene bromide resulted in a strong exothermic effect. Interestingly, mixing of 6,6-ionene bromide and NaBr solutions in water gave a small exothermic heat effect. Polyelectrolyte theories, based on continuum-solvent models, predict enthalpies of mixing to be positive (endothermic) for all the solutions examined in this work. The ion-specific effect is more strongly expressed in ionene solutions with higher charge density (3,3-ionene). The most important result of this work is the finding that the enthalpy of mixing of 3,3- (and of 6,6-ionene) fluorides with sodium halides can be expressed as a linear function of the enthalpy of hydration of the halide counterions. The experimental results were complemented with an explicit water molecular dynamics simulation of solutions of oligoions modelling 3,3- and 6,6-ionenes. The computer simulation results for various nitrogen-counterion pair distribution functions were in most cases consistent with the enthalpy measurements.  相似文献   

3.
Interactions between methyl tert-butyl ether (MTBE) and water have been investigated by scanning calorimetry, isothermal titration calorimetry, densitometry, IR-spectroscopy, and gas chromatography. The solubilization of MTBE in water at 25 °C at infinite dilution has ΔH° = -17.0 ± 0.6 kJ mol(-1); ΔS° = -80 ± 2 J mol(-1) K(-1); ΔC(p) = +332 ± 15 J mol(-1) K(-1); ΔV° = -18 ± 2 cm(3) mol(-1). The signs of these thermodynamic functions are consistent with hydrophobic interactions. The occurrence of hydrophobic interaction is further substantiated as IR absorption spectra of MTBE-water mixtures show that MTBE strengthens the hydrogen bond network of water. Solubilization of MTBE in water is exothermic whereas solubilization of water in MTBE is endothermic with ΔH° = +5.3 ± 0.6 kJ mol(-1). The negative mixing volume is explained by a large negative contribution due to size differences between water and MTBE and by a positive contribution due to changes in the water structure around MTBE. Henry's law constants, K(H), were determined from vapor pressure measurements of mixtures equilibrated at different temperatures. A van't Hoff analysis of K(H) gave ΔH(H)° = 50 ± 1 kJ mol(-1) and ΔS(H)° = 166 ± 5 J mol(-1) K(-1) for the solution to gas transfer. MTBE is excluded from the ice phase water upon freezing MTBE-water mixtures.  相似文献   

4.
Integral cross sections and product recoil velocity distributions were measured for reaction of C(2)H(2)(+) with NO(2), in which the C(2)H(2)(+) reactant was prepared in its ground state, and with mode-selective excitation in the cis-bend (2ν(5)) and CC stretch (n · ν(2), n = 1, 2). Because both reactants have one unpaired electron, collisions can occur with either singlet or triplet coupling of these unpaired electrons, and the contributions are separated based on distinct recoil dynamics. For singlet coupling, reaction efficiency is near unity, with significant branching to charge transfer (NO(2)(+)), O(-) transfer (NO(+)), and O transfer (C(2)H(2)O(+)) products. For triplet coupling, reaction efficiency varies between 13% and 19%, depending on collision energy. The only significant triplet channel is NO(+) + triplet ketene, generated predominantly by O(-) transfer, with a possible contribution from dissociative charge transfer at high collision energies. NO(2)(+) formation (charge transfer) can only occur on the singlet surface, and appears to be mediated by a weakly bound complex at low energies. O transfer (C(2)H(2)O(+)) also appears to be dominated by reaction on the singlet surface, but is quite inefficient, suggesting a bottleneck limiting coupling to this product from the singlet reaction coordinate. The dominant channel is O(-) transfer, producing NO(+), with roughly equal contributions from reaction on singlet and triplet surfaces. The effects of C(2)H(2)(+) vibration are modest, but mode specific. For all three product channels (i.e., charge, O(-), and O transfer), excitation of the CC stretch fundamental (ν(2)) has little effect, 2 · ν(2) excitation results in ~50% reduction in reactivity, and excitation of the cis-bend overtone (2 · ν(5)) results in ~50% enhancement. The fact that all channels have similar mode dependence suggests that the rate-limiting step, where vibrational excitation has its effect, is early on the reaction coordinate, and branching to the individual product channels occurs later.  相似文献   

5.
Syntheses of alkali metal adducts [LVO(2)M(H(2)O)(n)] (1-7) (M = Na(+), K(+), Rb(+), and Cs(+); L = L(1)(-)L(3)) of anionic cis-dioxovanadium(V) species (LVO(2)(-)) of tridentate dithiocarbazate-based Schiff base ligands H(2)L (S-methyl-3-((5-(R-2-hydroxyphenyl))methyl)dithiocarbazate, R = H, L = L(1); R = NO(2), L = L(2); R = Br, L = L(3)) have been reported. The LVO(2)(-) moieties here behave like an analogue of carboxylate group and have displayed interesting variations in their binding pattern with the change in size of the alkali metal ions as revealed in the solid state from the X-ray crystallographic analysis of 1, 3, 6, and 7. The compounds have extended chain structures, forming ion channels, and are stabilized by strong Coulombic and hydrogen-bonded interactions. The number of coordinated water molecules in [LVO(2)M(H(2)O)(n)] decreases as the charge density on the alkali metal ion decreases (n = 3.5 for Na(+) and 1 for K(+) and Rb(+), while, for Cs(+), no coordinated water molecule is present). In solution, compounds 1-7 are stable in water and methanol, while in aprotic solvents of higher donor strengths, viz. CH(3)CN, DMF and DMSO, they undergo photoinduced reduction when exposed to visible light, yielding green solutions from their initial yellow color. The putative product is a mixed-oxidation (mu-oxo)divanadium(IV/V) species as revealed from EPR, electronic spectroscopy, dynamic (1)H NMR, and redox studies.  相似文献   

6.
本文参照Wads设计的蒸发热量热计建立一升华热量热计。利用此升华热量热计和LKB8700蒸发热量热计, 测得如下化合物在298.15 K 时的蒸发焓和升华焓为: 化合物 升华焓(kJ mol~(-1)) 蒸发焓(kJmol~(-1))水 43.72±0.18正癸烷 51.21±0.25萘 73.26±0.921,2,3-三氯苯 75.14±0.751,2,4-三氯苯 55.06±0.501,3,5-三氯苯 72.68±0.50  相似文献   

7.
Silicon ions are generated in the Earth's upper atmosphere by hyperthermal collisions of material ablated from incoming meteoroids with atmospheric molecules, and from charge transfer of silicon-bearing neutral species with major atmospheric ions. Reported Si(+) number density vs. height profiles show a sharp decrease below 95 km, which has been commonly attributed to the fast reaction with H(2)O. Here we report rate coefficients and branching ratios of the reactions of Si(+) and SiO(+) with O(3), measured using a flow tube with a laser ablation source and detection of ions by quadrupole mass spectrometry. The results obtained are (2σ uncertainty): k(Si(+) + O(3), 298 K) = (6.5 ± 2.1) × 10(-10) cm(3) molecule(-1) s(-1), with three product channels (branching ratios): SiO(+) + O(2) (0.52 ± 0.24), SiO + O(2)(+) (0.48 ± 0.24), and SiO(2)(+) + O (<0.1); k(SiO(+) + O(3), 298 K) = (6 ± 4) × 10(-10) cm(3) molecule(-1) s(-1), where the major products (branching ratio ≥ 0.95) are SiO(2) + O(2)(+). Reactions (1) and (2) therefore have the unusual ability to neutralise silicon directly, as well as forming molecular ions which can undergo dissociative recombination with electrons. These reactions, along with the recently reported reaction between Si(+) and O(2)((1)Δ(g)), largely explain the disappearance of Si(+) below 95 km in the atmosphere, relative to other major meteoric ions such as Fe(+) and Mg(+). The rate coefficient of the Si(+) + O(2) + He reaction was measured to be k(298 K) = (9.0±1.3) × 10(-30) cm(6) molecule(-2) s(-1), in agreement with previous measurements. The SiO(2)(+) species produced from this reaction, which could be vibrationally excited, is observed to charge transfer at a relatively slow rate with O(2), with a rate constant of k(298 K) = (1.5 ± 1.0) × 10(-13) cm(3) molecule(-1) s(-1).  相似文献   

8.
The kinetics and mechanisms of the self-reaction of allyl radicals and the cross-reaction between allyl and propargyl radicals were studied both experimentally and theoretically. The experiments were carried out over the temperature range 295-800 K and the pressure range 20-200 Torr (maintained by He or N(2)). The allyl and propargyl radicals were generated by the pulsed laser photolysis of respective precursors, 1,5-hexadiene and propargyl chloride, and were probed by using a cavity ring-down spectroscopy technique. The temperature-dependent absorption cross sections of the radicals were measured relative to that of the HCO radical. The rate constants have been determined to be k(C(3)H(5) + C(3)H(5)) = 1.40 × 10(-8)T(-0.933) exp(-225/T) cm(3) molecule(-1) s(-1) (Δ log(10)k = ± 0.088) and k(C(3)H(5) + C(3)H(3)) = 1.71 × 10(-7)T(-1.182) exp(-255/T) cm(3) molecule(-1) s(-1) (Δ log(10)k = ± 0.069) with 2σ uncertainty limits. The potential energy surfaces for both reactions were calculated with the CBS-QB3 and CASPT2 quantum chemical methods, and the product channels have been investigated by the steady-state master equation analyses based on the Rice-Ramsperger-Kassel-Marcus theory. The results indicated that the reaction between allyl and propargyl radicals produces five-membered ring compounds in combustion conditions, while the formations of the cyclic species are unlikely in the self-reaction of allyl radicals. The temperature- and pressure-dependent rate constant expressions for the important reaction pathways are presented for kinetic modeling.  相似文献   

9.
四芳基卟啉锰配离子的TCNQ电荷转移盐的合成和物理性质   总被引:3,自引:0,他引:3  
合成了13个四芳基卟啉锰配离子的TCNQ电荷转移盐[TAPMn][TCNQ]n(TAPH2=α,β,γ,δ-四芳基卟啉;A=C6H5,4-CH3C6H4,4-CH3OC6H4,4-ClC6H4,3-ClC6H4,3-FC6H4,4-(CH3)2NC6H4,2,4-Cl2C6H3;TCNQ=7,7,8,8-四氰基对苯醌二甲烷;n=1,2).通过元素分析、IR、XPS、ESR、磁化率和电导率对其进行了表征.结果表明:这些电荷转移盐分子中存在TCNQ0和TCNQ-,且TCNQ0和TCNQ-之间存在相互作用,部分电荷从[TCNQ]n-向[TAPMn]+转移,导致化合物中的锰表现为混合价态.复合盐的室温电导率在10-7~10-10S·cm-1,属于有机半导体,简单盐的室温电导率小于10-11S·cm-1.  相似文献   

10.
The electronic structure of the diatomic species CoH, CoH(+), and CoH(-) have been studied mainly by multireference configuration interaction (MRCI) methods and basis sets of quintuple quality. The restricted coupled-cluster with iterative singles + doubles + quasi-perturbative connected triples, RCCSD(T), approach was also employed, limited however to the ground states only. At the MRCI level we have constructed 27 (CoH), 24 (CoH(+)), and 12 (CoH(-)) potential energy curves correlating adiabatically to six, seven, and two energy channels, respectively. For the ground states scalar relativistic and core-subvalence effects have been taken into account. We report energetics, spectroscopic parameters, dipole moments, excitation energies, and spin-orbit coupling constants. Our CoH calculated results are in accord with experiment, but there is an interesting discrepancy between theory and experiment concerning the dipole moment, the former being significantly larger than the latter. Experimental results on CoH(+) and CoH(-) are scarce. The ground state of CoH, CoH(+), and CoH(-) are definitely of (3)Φ, (4)Φ, and (4)Φ symmetries with calculated (experimental) dissociation energies D(0)(0) = 46.4 ± 0.5(45.0 ± 1.2), 49.6(47 ± 2), and 45.6(43.1 ± 1.2) kcal/mol, respectively. In all 24 calculated CoH states, a Co-to-H charge transfer of 0.2-0.3 e(-) is recorded; in CoH(-), however, the negative charge resides almost exclusively on the Co atom.  相似文献   

11.
Addition of the new phosphonium carborane salts [HPR(3)][closo-CB(11)H(6)X(6)] (R = (i)Pr, Cy, Cyp; X = H 1a-c, X = Br 2a-c; Cy = C(6)H(11), Cyp = C(5)H(9)) to [Rh(nbd)(mu-OMe)](2) under a H(2) atmosphere gives the complexes Rh(PR(3))H(2)(closo-CB(11)H(12)) 3 (R = (i)Pr 3a, Cy 3b, Cyp 3c) and Rh(PR(3))H(2)(closo-CB(11)H(6)Br(6)) 4 (R = (i)Pr 4a, Cy 4b, Cyp 4c). These complexes have been characterised spectroscopically, and for 4b by single crystal X-ray crystallography. These data show that the {Rh(PR(3))H(2)}(+) fragment is interacting with the lower hemisphere of the [closo-CB(11)H(6)X(6)](-) anion on the NMR timescale, through three Rh-H-B or Rh-Br interactions for complexes 3 and 4 respectively. The metal fragment is fluxional over the lower surface of the cage anion, and mechanisms for this process are discussed. Complexes 3a-c are only stable under an atmosphere of H(2). Removing this, or placing under a vacuum, results in H(2) loss and the formation of the dimer species Rh(2)(PR(3))(2)(closo-CB(11)H(12))(2) 5a (R = (i)Pr), 5b (R = Cy), 5c (R = Cyp). These dimers have been characterised spectroscopically and for 5b by X-ray diffraction. The solid state structure shows a dimer with two closely associated carborane monoanions surrounding a [Rh(2)(PCy(3))(2)](2+) core. One carborane interacts with the metal core through three Rh-H-B bonds, while the other interacts through two Rh-H-B bonds and a direct Rh-B link. The electronic structure of this molecule is best described as having a dative Rh(I) --> Rh(III), d(8)--> d(6), interaction and a formal electron count of 16 and 18 electrons for the two rhodium centres respectively. Addition of H(2) to complexes 5a-c regenerate 3a-c. Addition of alkene (ethene or 1-hexene) to 5a-c or 3a-c results in dehydrogenative borylation, with 1, 2, and 3-B-vinyl substituted cages observed by ESI-MS: [closo-(RHC[double bond, length as m-dash]CH)(x)CB(11)H(12-x)](-)x = 1-3, R = H, C(4)H(9). Addition of H(2) to this mixture converts the B-vinyl groups to B-ethyl; while sequential addition of 4 cycles of ethene (excess) and H(2) to CH(2)Cl(2) solutions of 5a-c results in multiple substitution of the cage (as measured by ESI-MS), with an approximately Gaussian distribution between 3 and 9 substitutions. Compositionally pure material was not obtained. Complexes 4a-c do not lose H(2). Addition of tert-butylethene (tbe) to 4a gives the new complex Rh(P(i)Pr(3))(eta(2)-H(2)C=CH(t)Bu)(closo-CB(11)H(6)Br(6)) 6, characterised spectroscopically and by X-ray diffraction, which show coordination of the alkene ligand and bidentate coordination of the [closo-CB(11)H(6)Br(6)](-) anion. By contrast, addition of tbe to 4b or 4c results in transfer dehydrogenation to give the rhodium complexes Rh{PCy(2)(eta(2)-C(6)H(9))}(closo-CB(11)H(6)Br(6)) 7 and Rh{PCyp(2)(eta(2)-C(5)H(7))}(closo-CB(11)H(6)Br(6)) 9, which contain phosphine-alkene ligands. Complex has been characterised crystallographically.  相似文献   

12.
The photodissociation dynamics of Au-Xe leading to Xe(+) formation via the Ξ(1∕2)-X(2)Σ(+) (v('), 0) band system (41?500-41?800 cm(-1)) have been investigated by velocity map imaging. Five product channels have been indentified, which can be assigned to photoinduced charge transfer followed by photodissociation in either the neutral or the [Au-Xe](+) species. For the neutral species, charge transfer occurs via a superexcited Rydberg state prior to dissociative ionization, while single-photon excitation of the gold atom in Au(+)-Xe accesses an (Au(+))?-Xe excited state that couples to a dissociative continuum in Au-Xe(+). Mechanisms by which charge transfer occurs are proposed, and branching ratios for Xe(+) formation via the superexcited Rydberg state are reported. The bond dissociation energy for the first excited state of Au(+)-Xe is determined to be ~9720 ± 110 cm(-1).  相似文献   

13.
In this study we report that fac-[Pt(IV)(dach)(9-EtG)Cl(3)](+) (dach = d,l-1,2-diaminocyclohexane, 9-EtG = 9-ethylguanine) in high pH (pH 12) or phosphate solution (pH 7.4) produces 8-oxo-9-EtG and Pt(II) species. The reaction in H(2)(18)O revealed that the oxygen atom in hydroxide or phosphate ends up at the C8 position of 8-oxo-G. The kinetics of the redox reaction was first order with respect to both Pt(IV)-G and free nucleophiles (OH(-) and phosphate). The oxidation of G initiated by hydroxide was approximately 30~50 times faster than by phosphate in 100 mM NaCl solutions. The large entropy of activation of OH(-1) (ΔS(?) = 26.6 ± 4.3 J mol(-1) K(-1)) due to the smaller size of OH(-) is interpreted to be responsible for the faster kinetics compared to phosphate (ΔS(?) = -195.5 ± 11.1 J mol(-1) K(-1)). The enthalpy of activation for phosphate reaction is more favorable relative to the OH(-) reaction (ΔH(?) = 35.4 ± 3.5 kJ mol(-1) for phosphate vs. 96.6 ± 11.4 kJ mol(-1) for OH(-1)). The kinetic isotope effect of H8 was determined to be 7.2 ± 0.2. The rate law, kinetic isotope effect, and isotopic labeling are consistent with a mechanism involving proton ionization at the C8 position as the rate determining step followed by two-electron transfer from G to Pt(IV).  相似文献   

14.
The binding of neodymium(III) and praseodymium(III) complexes containing 1,10-phenanthroline, [M(phen)2Cl3·OH2] (M=Nd (1), Pr (2)), to DNA has been investigated by absorption, emission, and viscosity measurements. The complexes show absorption decreasing in charge transfer band, fluorescence decrement when bound to DNA. The binding constant Kb has been determined by absorption measurement for both complexes and found to be (6.76±0.12)×10(4) for 1 and (1.83±0.15)×10(4)M(-1), for 2. The fluorescence of [M(phen)2Cl3·OH2] (M=Nd (1), Pr (2)) has been studied in detail. The results of fluorescence titration reveal that DNA has the strong ability to quenching the intrinsic fluorescence of Nd(III) and Pr(III) complexes through the static quenching procedure. The binding site number n, apparent binding constant Kb and the Stern-Volmer constant kSV are determined. Thermodynamic parameters, enthalpy change (ΔH°) and entropy change (ΔS°), are calculated according to relevant fluorescent data and Van't Hoff equation. The experimental data suggest that the complexes bind to DNA by non-intercalative mode. Major groove binding is the preferred mode of interaction for [M(phen)2Cl3·OH2] (M=Nd (1), Pr (2)) with DNA.  相似文献   

15.
The reaction of propene (CH(3)CH═CH(2)) with hydrogen atoms has been investigated in a heated single-pulsed shock tube at temperatures between 902 and 1200 K and pressures of 1.5-3.4 bar. Stable products from H atom addition and H abstraction have been identified and quantified by gas chromatography/flame ionization/mass spectrometry. The reaction for the H addition channel involving methyl displacement from propene has been determined relative to methyl displacement from 1,3,5-trimethylbenzene (135TMB), leading to a reaction rate, k(H + propene) → H(2)C═CH(2) + CH(3)) = 4.8 × 10(13) exp(-2081/T) cm(3)/(mol s). The rate constant for the abstraction of the allylic hydrogen atom is determined to be k(H + propene → CH(2)CH═CH(2) + H(2)) = 6.4 × 10(13) exp(-4168/T) cm(3)/(mol s). The reaction of H + propene has also been directly studied relative to the reaction of H + propyne, and the relationship is found to be log[k(H + propyne → acetylene + CH(3))/k(H + propene → ethylene + CH(3))] = (-0.461 ± 0.041)(1000/T) + (0.44 ± 0.04). The results showed that the rate constant for the methyl displacement reaction with propene is a factor of 1.05 ± 0.1 larger than that for propyne near 1000 K. The present results are compared with relevant earlier data on related compounds.  相似文献   

16.
Reactions between Mg(+) and O(3), O(2), N(2), CO(2) and N(2)O were studied using the pulsed laser photo-dissociation at 193 nm of Mg(C(5)H(7)O(2))(2) vapour, followed by time-resolved laser-induced fluorescence of Mg(+) at 279.6 nm (Mg(+)(3(2)P(3/2)-3(2)S(1/2))). The rate coefficient for the reaction Mg(+) + O(3) is at the Langevin capture rate coefficient and independent of temperature, k(190-340 K) = (1.17 ± 0.19) × 10(-9) cm(3) molecule(-1) s(-1) (1σ error). The reaction MgO(+) + O(3) is also fast, k(295 K) = (8.5 ± 1.5) × 10(-10) cm(3) molecule(-1) s(-1), and produces Mg(+) + 2O(2) with a branching ratio of (0.35 ± 0.21), the major channel forming MgO(2)(+) + O(2). Rate data for Mg(+) recombination reactions yielded the following low-pressure limiting rate coefficients: k(Mg(+) + N(2)) = 2.7 × 10(-31) (T/300 K)(-1.88); k(Mg(+) + O(2)) = 4.1 × 10(-31) (T/300 K)(-1.65); k(Mg(+) + CO(2)) = 7.3 × 10(-30) (T/300 K)(-1.59); k(Mg(+) + N(2)O) = 1.9 × 10(-30) (T/300 K)(-2.51) cm(6) molecule(-2) s(-1), with 1σ errors of ±15%. Reactions involving molecular Mg-containing ions were then studied at 295 K by the pulsed laser ablation of a magnesite target in a fast flow tube, with mass spectrometric detection. Rate coefficients for the following ligand-switching reactions were measured: k(Mg(+)·CO(2) + H(2)O → Mg(+)·H(2)O + CO(2)) = (5.1 ± 0.9) × 10(-11); k(MgO(2)(+) + H(2)O → Mg(+)·H(2)O + O(2)) = (1.9 ± 0.6) × 10(-11); k(Mg(+)·N(2) + O(2)→ Mg(+)·O(2) + N(2)) = (3.5 ± 1.5) × 10(-12) cm(3) molecule(-1) s(-1). Low-pressure limiting rate coefficients were obtained for the following recombination reactions in He: k(MgO(2)(+) + O(2)) = 9.0 × 10(-30) (T/300 K)(-3.80); k(Mg(+)·CO(2) + CO(2)) = 2.3 × 10(-29) (T/300 K)(-5.08); k(Mg(+)·H(2)O + H(2)O) = 3.0 × 10(-28) (T/300 K)(-3.96); k(MgO(2)(+) + N(2)) = 4.7 × 10(-30) (T/300 K)(-3.75); k(MgO(2)(+) + CO(2)) = 6.6 × 10(-29) (T/300 K)(-4.18); k(Mg(+)·H(2)O + O(2)) = 1.2 × 10(-27) (T/300 K)(-4.13) cm(6) molecule(-2) s(-1). The implications of these results for magnesium ion chemistry in the atmosphere are discussed.  相似文献   

17.
In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(?)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(?)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f,?gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f,?liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f,?gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f,?liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.  相似文献   

18.
The study of the photophysical properties of dendritic-like phosphinothiolate gold(I) complexes has been carried out. The studied complexes are two series of analogous compounds bearing 4 or 8 metal centers: the tetranuclear [Au(4)(S-C(6)H(4)-X)(4){DAB-G0-(PPh(2))(4)}] (X = F (3), MeO (4), Me (5) and NO(2) (6)) and the octanuclear [Au(8)(S-C(6)H(4)-X)(8){DAB-G1-(PPh(2))(8)}] (X = F (9), MeO (10), Me (11) and NO(2) (12)) complexes. All compounds are brightly luminescent in solid state at 77 K displaying lifetimes in the microsecond range. The correlation between the substituent in position four of the benzenethiolate ligand and the emission energy shows that the emissions arise from (3)[pπ(S)→pσ(Au)] or from intra-ligand (3)[π(S)→π*(C(6)H(4)X)] charge transfer transitions, depending on the substituents. Theoretical DFT-B3LYP, ONIOM (DFT-B3LYP/UFF) and ONIOM (MP2/UFF) calculations on mononuclear and dinuclear model systems permit evaluation of both the structural distortions upon excitation to the lowest triplet excited state T(1) and the shape of the orbitals involved in the charge transfer transitions. These calculations also allow us to evaluate the influence of the substituent in position four of the benzenethiolate ligand and the presence of Au···Au interactions.  相似文献   

19.
The rate constants for the gas-phase reactions of hydroxyl radicals and ozone with the biogenic hydrocarbons β-ocimene, β-myrcene, and α- and β-farnesene were measured using the relative rate technique over the temperature ranges 313-423 (for OH) and 298-318 K (for O?) at about 1 atm total pressure. The OH radicals were generated by photolysis of H?O?, and O? was produced from the electrolysis of O?. Helium was used as the diluent gas. The reactants were detected by online mass spectrometry, which resulted in high time resolution, allowing large amounts of data to be collected and used in the determination of the Arrhenius parameters. The following Arrhenius expressions have been determined for these reactions (in units of cm3 molecules?1 s?1): for β-ocimene + OH, k = (4.35(-0.66)(+0.78)) × 10?11 exp[(579 ± 59)/T]; for β-ocimene + O?, k = (3.15(-0.95)(+1.36)) × 10?1? exp[-(626 ± 110)/T]; for β-myrcene + O?, k = (2.21(-0.66)(+0.94)) × 10?1? exp[-(520 ± 109)/T]; for α-farnesene + OH, k(OH) = (2.19 ± 0.11) × 10?1? for 23-413 K; for α-farnesene + O?, k = (3.52(-2.54)(+9.09)) × 10?12 exp[-(2589 ± 393)/T]; for β-farnesene + OH, k(OH) = (2.88 ± 0.15) × 10?1? for 323-423 K; for β-farnesene + O?, k = (1.81(-1.19)(+3.46)) × 10?12 exp[-(2347 ± 329)/T]. The Arrhenius parameters here are the first to be reported. The reactions of α- and β-farnesene with OH showed no significant temperature dependence. Atmospheric residence times due to reactions with OH and O? were also presented.  相似文献   

20.
Van der Waals binding energies for the X-O(2) complexes (X=Xe, CH(3)I, C(3)H(6), C(6)H(12)) are determined by analysis of experimental velocity map imaging data for O((3)P(2)) atoms arising from UV-photodissociation of the complex [A. V. Baklanov et al., J. Chem. Phys. 126, 124316 (2007)]. Several dissociation pathways have been observed, we focus on the channel corresponding to prompt dissociation of X-O(2) into X+2O((3)P) fragments, which is present for complexes of O(2) with all partners X. Our method is based on analysis of the kinetic energy of all three photofragments, where the O atom kinetic energy was directly measured in the experiment and the kinetic energy of the X partner was calculated using momentum conservation, along with the measured angular anisotropy for O atom recoil. We exploit the fact that the clusters are all T-shaped or nearly T-shaped, which we also confirm by ab initio calculations, along with knowledge of the transition dipole governing radiative absorption by the complex. The effect of partitioning the kinetic energy between translation along the X-O(2) and O-O coordinates on the angular anisotropy of the O atom recoil direction is discussed. Van der Waals binding energies of 110±20 cm(-1), 280±20 cm(-1), 135±30 cm(-1), and 585±20 cm(-1) are determined for Xe-O(2), CH(3)I-O(2), C(3)H(6)-O(2), and C(6)H(12)-O(2) clusters, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号