首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
Copper oxide particles were synthesized by precipitation in sodium hydroxide and dispersed simultaneously in mesoporous SBA-15 silica. The materials were then submitted to thermal treatment under nitrogen at different temperatures. They were tested as novel NO(2) adsorbents in dynamic condition at room temperature. The surface of the initial and exhausted materials was characterized using N(2) adsorption, XRD, TEM, thermal analysis and FT-IR. The addition of Cu(2)O particles leads to a significant increase in the NO(2) adsorption capacity. However, no trend between the NO(2) capacity and the temperature of the thermal treatment of the materials has been observed. The amount of NO released during the NO(2) adsorption was found to be lower on the materials submitted to a low temperature treatment. On these materials, the formation of copper nitrites is favored, whereas on materials treated at higher temperature, copper nitrates are formed as a predominant species. The results suggest that silanol groups of the silica matrix play an important role in NO(2) adsorption and NO retention at room temperature.  相似文献   

2.
Mixed oxides Ce(1-x)Zr(x)O(2) prepared by slow coprecipitation in NaOH were tested for NO(2) adsorption in dynamic conditions at room temperature. The samples were characterized before and after exposure to NO(2) by XRD, N(2)-adsorption, thermal analysis, potentiometric titration, and FT-IR. Mixed oxides show a better NO(2) adsorption capacity than the parent materials (CeO(2) and Zr(OH)(4)). This effect is linked to the presence of reduced cerium and oxygen vacancies induced by the addition of Zr(4+) cations to the structure. The results indicate that NO(2) reacts with Ce(3+) to form nitrite and nitrate species on the surface. The NO retention increases with an increase in the Zr(OH)(4) content. A decrease in the density of -OH groups on the surface after the exposure to NO(2), suggests their involvement in reactive adsorption of NO and/or NO(2). From the structural point of view, no real difference was observed on the Ce(1-x)Zr(x)O(2) materials before and after exposure to NO(2).  相似文献   

3.
Novel amorphous organic-inorganic hybrid silica materials have been prepared by the conventional sol-gel reaction of bis(gamma-trimethoxysilyl)propylamine (TMSPA) and tetraethyl orthosilicate (TEOS) in the presence of cetyltrimethylammonium bromide (CTABr) as a structure directing agent. The gelation of the hybrid silica gels took place faster as the TMSPA composition was higher. Infrared Spectroscopy (IR), Thermogravimetric Analysis (TGA), X-Ray Diffraction (XRD), and Scanning electron microscope (SEM) were used to characterize various hybrid materials. Nitrogen adsorption desorption isotherms at 77 K were used to determine the surface area, and average pore size. The hybrids were composed of macropores and a small amount of micropores. According to SEM photographs, the hybrids were composed of quite uniform aggregate of spherical particles with ca. 60 nm in diameter.  相似文献   

4.
Etienne M  Walcarius A 《Talanta》2003,59(6):1173-1188
Various samples of aminopropyl-functionalized silica (APS) have been prepared by grafting an organosilane precursor 3-aminopropyl-triethoxysilane (APTES) onto the surface of silica gel. The amine group content of the materials has been adjusted by varying the amount of APTES in the reaction medium (toluene). The grafted APS solids have been characterized with using several analytical techniques (N2 adsorption, X-ray photoelectron spectroscopy, infrared spectrometry) to determine their physico-chemical properties. Their reactivity in aqueous solutions was studied by acid-base titration, via protonation of the amine groups, and by way of complexation of these groups by HgII species. APS stability in aqueous medium was investigated at various pH and as a function of time, by the quantitative analysis of soluble Si- or amine-containing species that have been leached in solution upon degradation of APS. The chemical stability was found to increase when decreasing pH below the pKa value corresponding to the RNH3+/RNH2 couple, but very low pH values were necessary to get long-term stability because of the high local concentration of the amine groups in the APS materials. Adsorption of mercury(II) ions on APS was also performed to confirm the long-term stability of the grafted solid in acidic medium. Relationship between solution pH and APS stability was discussed. For sake of comparison, the stability of APS in ethanol and that of mercaptopropyl-grafted silica (MPS) in water have been briefly considered and discussed with respect to practical applications of silica-based organic–inorganic hybrids, e.g., in separation science or in the field of electrochemical sensors.  相似文献   

5.
A new strategy, releasing nitric oxide (NO) and adsorbing nitrosamines simultaneously by zeolitic materials in the digestive system, is validated in this paper. Three types of moisture-saturated molecular sieves, HZSM-5 zeolite, mesoporous zeolite, and mesoporous silica MCM-41, are used as NO-delivery vessels in mimic gastric juice after modification of γ-aminopropyltriethoxysilane (APTES). APTES modification dramatically increased the capability of zeolite and mesoporous silica in NO release in acidic solution, because more NO can be adsorbed in the composite and stored in the form of nitrite. Some composites released the NO 10 times more than their parent materials, and synchronously captured the carcinogen nitrosamines in mimic gastric juice. The influences of APTES modification on the porous structure and surface state of zeolite and mesoporous silica were investigated by XRD, N(2) adsorption, and FTIR tests, through which the mesoporous zeolite is proven to be the optimal support. With this hierarchical material a controllable APTES modification is realized in which a lot of aminopropyl groups are grafted in mesopores while the zeolitic structure is maintained, so the resulting sample exhibits a high capability in releasing NO and adsorbing nitrosamines. This investigation provides a clue for elevating the efficiency of zeolites in the application of life science.  相似文献   

6.
Highly dispersed silica samples with different degrees of substitution of silanol groups by trimethylsilyl groups are obtained by the gas-phase modification method. The adsorption of vitamins B1, B6, and E on initial and modified silica samples is studied. It is shown that the modified adsorbents with degrees of substitution of silanol groups up to 40% exhibit higher affinity to vitamin molecules; in this case, adsorption properties of the modified silica samples depend on the nature of the adsorbate and the number of grafted groups.  相似文献   

7.
Synthesis of carboxyl-modified rod-like SBA-15 by rapid co-condensation   总被引:1,自引:0,他引:1  
Carboxyl-modified SBA-15 rod-like mesoporous materials have been synthesized by a facile rapid co-condensation of tetraethylorthosilicate (TEOS) and 2-cyanoethyltriethoxysilane (CTES), followed by hydrolysis of cyanide groups in sulfuric acid. The concentration of carboxylic groups was varied by changing the silica source ratio of CTES/TEOS from 0.05 to 0.3. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the uniform ordered mesoporous structure and rod-like morphology of SBA-15 have been preserved even at the high concentration of carboxylic groups employed. Characterization by Fourier transformed infrared spectroscopy (FTIR), solid-state NMR investigation indicated that carboxylic groups have been successfully grafted onto the surface of SBA-15 through siloxane bonds [(O(3))SiCH(2)CH(2)COOH. The negative charges of the modified SBA-15 materials were enhanced by the presence of the carboxylic groups on the surface. The capacity of lysozyme adsorption of the modified SBA-15 materials were found to be significantly improved as compared with pure silica SBA-15. The maximum amount of lysozyme adsorption on carboxyl-modified was increased with the pH of solution increased from 5.5 to 9.0.  相似文献   

8.
M Jaćkowska  S Bocian  B Buszewski 《The Analyst》2012,137(19):4610-4617
The novel grafted silica supports were investigated. The anion exchanger was prepared by chemical modification of a bare silica gel surface. The support was coated with a polymeric moiety formed by condensation polymerization of primary amine with diepoxide. The synthesized copolymer of methylamine (MA) and 1,4-butanedioldiglycidyl ether (BDDE) exhibited a dendrimer structure. The prepared materials were characterized by elemental analysis, FT-IR spectroscopy and solid state (13)C and (29)Si NMR CP-MAS spectroscopy. The porous structure of the adsorbents was investigated using the low temperature nitrogen adsorption (LTNA) method. It allows determination of the influence of the topology of packing materials on their chromatographic properties. Imaging was also carried out on the surfaces of the synthesized materials by scanning electron microscopy (SEM). The obtained stationary phase was applied in ion chromatography for the separation of inorganic anions (F(-), Cl(-), NO(2)(-), Br(-), NO(3)(-), HPO(4)(2-), SO(4)(2-), ClO(4)(-)). Bicarbonate buffer was used as a mobile phase.  相似文献   

9.
High-dispersity silica was modified by functional groups capable of protonating or carrying a constant positive charge. IR and UV spectroscopy, temperature-programmed thermogravimetry, pH metry, and quantitative analysis of grafted compounds were used to determine the structure of the surface of functional organosilicas. The adsorption of primary bile (cholic) acid on silica adsorbents and cholestiramine was studied. The adsorption of cholic acid from solutions with pH 2–8 was substantially higher on adsorbents with positively charged surfaces. The silica adsorbents synthesized were shown to have higher cholic acid adsorption parameters compared with adsorbents used in medicine.  相似文献   

10.
通过共缩合和气相甲基接枝两步法制备了新型的高疏水性富含甲基的Ti-HMS介孔分子筛.采用X光衍射、N2吸附、红外光谱、硅核磁、热重、元素分析(原子发射光谱)、紫外可见光谱等手段和亲水性实验对样品进行表征,并用环己烯环氧化反应进行催化性能测试.结果表明,经过两步接枝甲基后,Ti-HMS仍保持典型的介孔结构特征,拥有较多的甲基含量和较高的疏水性,催化环己烯环氧化活性和选择性均比共缩合法(一步接枝法)Ti-HMS有所提高.  相似文献   

11.
Mesoporous silica materials with a centered rectangular symmetry (cmm) have been synthesized through a facile direct-templating method using tetraethylorthosilicate (TEOS) and amphiphilic block co-polymers Pluronic P123 under acidic conditions. The amino groups have been grafted to as-synthesized mesoporous silica by [1-(2-amino-ethyl)-3-aminopropyl]trimethoxysilane (AAPTS). Thus obtained amino-functionalized mesoporous silica (denoted as NN-silica) was used for sequestration of Cr(VI) from aqueous solution. After sequestration of Cr(VI), the sample was denoted as Cr(VI)-silica. The parent mesoporous silica, NN-silica and Cr(VI)-silica were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and N(2) adsorption-desorption isotherms. XRD and TEM results confirm that the structure of these samples is centered rectangular symmetry (cmm). N(2) adsorption-desorption isotherms show that there is a remarkable decrease in surface area and pore volume for NN-silica (S(BET)=54.5 m(2)g(-1), V(P)=0.09 cm(3)g(-1)) and Cr(VI)-silica (S(BET)=53.2 m(2)g(-1), V(P)=0.07 cm(3)g(-1)) compared to the parent mesoporous silica (S(BET)=444.0 m(2)g(-1), V(P)=0.71 cm(3)g(-1)). The BJH desorption average diameter of NN-silica, Cr(VI)-silica and the parent mesoporous silica is 4.40 nm, 4.07 nm and 5.11 nm, respectively. The results reveal the channels of as-synthesized mesoporous silica are essentially grafted with abundant amino groups and loaded with Cr(VI). The adsorption experiment results show that the functionalized mesoporous silica materials possess an increased Cr(VI) adsorption capacity and the maximum Cr(VI) loadings at 25, 35 and 45 degrees C can reach 2.28, 2.86 and 3.32 mmol/g, respectively.  相似文献   

12.
Mesoporous silica particles (Davisil) were functionalized with aminopropyltriethoxysilane (APTES) in a fractional factorial design with 19 different synthesis and uptake experiments. The number of amino groups and the uptake of CO(2) were optimized in a 2(V)(5-1) design. Most important to functionalization was the amount of water present during synthesis, the reaction time, and pretreating the silica with a mineral acid; certain two-way interactions were shown to be statistically significant as well. Modifications performed at 110 or 80 °C showed no significant differences concerning amine content or uptake of CO(2). Properly choosing center points for the discrete variables is problematic and is somewhat related to the lack of fit with respect to CO(2) uptake; the regression was good. Solid-state (29)Si NMR showed that the APTES was mainly fully condensed. Specific surface areas did not correlate with the number of n-propylamine groups on the silica, which is indicative of differential levels of heterogeneity in the coverage of propylamines. The uptake of CO(2) and N(2) was measured from -20 to 70 °C and from 0 to 1 bar and parametrized by the Freundlich isotherm. Amine-modified silica adsorbed significant amounts of CO(2), especially at the low partial pressure, which is important for CO(2) capture from flue gas. At such pressures, samples with a high density of amine (4 amines/nm(2)) showed a much higher uptake of CO(2) than did those with densities of ~2-3 amines/nm(2), reflecting differential tendencies to form propylammonium-propylcarbamate ion pairs; these require close proximity among amine groups to form. Water affected the uptake of carbon dioxide in different ways. Certain samples took up more moist CO(2) gas than dry CO(2), and others took up less moist CO(2) than dry CO(2), which is indicative of differential tendencies toward water adsorption. We conclude that experimental design is a time-efficient approach to the functionalization of silica with propylamine groups.  相似文献   

13.
The amphiphilic polymer‐grafted silica was newly prepared as a stationary phase in high‐performance liquid chromatography. Poly(4‐vinylpyridine) with a trimethoxysilyl group at one end was grafted onto porous silica particles and the pyridyl side chains were quaternized with 1‐bromooctadecane. The obtained poly(octadecylpyridinium)‐grafted silica was characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy and Brunauer–Emmett–Teller analysis. The degree of quaternization of the pyridyl groups on the obtained stationary phase was estimated to be 70%. The selective retention behaviors of polycyclic aromatic hydrocarbons including some positional isomers were investigated using poly(octadecylpyridinium)‐grafted silica as an amphiphilic polymer stationary phase in high‐performance liquid chromatography and results were compared with commercially available polymeric octadecylated silica and phenyl‐bonded silica columns. The results indicate that the selectivity toward polycyclic aromatic hydrocarbons exhibited by the amphiphilic polymer stationary phase is higher than the corresponding selectivity exhibited by a conventional phenyl‐bonded silica column. However, compared with the polymeric octadecylated silica phase, the new stationary phase presents similar retention behavior for polycyclic aromatic hydrocarbons but different retention behavior particularly for positional isomers of disubstituted benzenes as the aggregation structure of amphiphilic polymers on the surface of silica substrate has been altered during mobile phase variation.  相似文献   

14.
Five novel organosilicas SiO2-L have been prepared by grafting organic ligands (L) bearing thiazolidine (TAMS), thiazole (TIMS), imidazole (DTIMS), mercaptopropyl (DETATS) or pyridine (DETAPS) functional groups. The SiO2-L materials have been evaluated for their capacity for Pb2+ and Cd2+ uptake from aqueous solution as a function of the pH. The present data demonstrate that the grafting of the silica may result in significant enhancement of metal uptake by the SiO2-L adsorbent. Noticeably, multifunctional ligands such as DTIMS and DETAPS, have exhibited the highest metal capacity between the studied materials. Significant metal uptake was observed for both Pb and Cd on those materials independent of pH. The adsorption data have been analyzed based on a surface complexation model (SCM) with FITEQL by considering the grafted ligands as additional surface sites. FT-IR data are provided in support of this approach. Based on the theoretical speciation results, we may conclude that the determining factors for the metal uptake by the modified silica are the following three: (a) the presence or absence of protonable groups on the ligand determines the pH-edge profile, (b) the complexing affinity of the particular ligand towards each metal, and (c) the amount of grafted ligand on the silica surface. The interplay of these factors will determine the final maximum loading capacity of the sorbing material. Both the nature of the ligand as well as its surface concentration are of equal importance for the sorbing capacity of the material.  相似文献   

15.
A novel methyl-rich Ti-containing hexagonal mesoporous silica (Ti-HMS) molecular sieve with high hydrophobicity has been prepared by a two-step method involving co-condensation followed by vapor-phase methyl grafting. The sample was characterized by XRD, N2 adsorption, FTIR, UV-visible and 29Si NMR spectroscopies, TG, ICP-AES, and hydrophilicity measurements, and its catalytic performance was evaluated using the epoxidation of cyclohexene as a probe reaction. The Ti-HMS material retains a typical mesoporous structure and compared with a co-condensed Ti-HMS prepared in a one-step method possesses more methyl groups and higher hydrophobicity, and also exhibits better catalytic activity and selectivity.  相似文献   

16.
Sample adsorption to the inner surface of fused silica capillaries is a common problem in CE when analyzing macromolecules and is harmful to the analysis. We previously utilized the pH hysteresis effect of fused silica to facilitate electrophoresis of the strongly adsorbing protein β(2) gpI in plain-fused silica capillaries at neutral pH. In the present paper, the effect of different pretreatments of the capillary on the adsorption of the β(2) -glycoprotein I has been investigated using electroosmosis markers, SDS mobilization, and imaging based on indirect immunofluorescence microscopy for direct visualization. The amount of β(2) gpI adsorbed on the surface was probed using all these independent techniques after electrophoresis at neutral pH on capillaries pretreated with HCl, background electrolyte (BGE), and NaOH. BGE pretreatment was included as a positive control. We found that 80% or more of the starting material was adsorbed to the inner surface of the silica capillaries during electrophoresis after pretreatment with only BGE or with NaOH, but after acidic pretreatment the loss was consistently less than 20%. NaOH most efficiently removes adsorbed protein between runs. A theoretical calculation of the pH change of the BGE showed that electrolysis affects the pH more than the deprotonation of silanols during electrophoresis. We conclude that acidic pretreatment of fused silica capillaries diminishes adsorption of β(2) gpI by decreasing charge-dependent wall adsorption.  相似文献   

17.
This study investigates the functionalization of sol-gel silica with selected organic species, and compares the materials obtained to a commercially available silica functionalized under comparable conditions. Anilines with different active groups were grafted onto the surface of the silicas, via reaction with key surface sites, to modulate the hydrophobicity of the materials. The properties of the functionalized materials, as determined by FT-IR, DTA-TGA and nitrogen adsorption (surface area, SBET) are discussed.  相似文献   

18.
将甲基丙烯酸缩水甘油酯(GMA)接枝于硅胶微粒表面,制得了接枝微粒PGMA/SiO2; 使亚氨二乙酸(IDAA)与接枝PGMA的环氧基团发生开环反应, 从而将亚氨二乙酸基团引入接枝微粒表面, 制得了复合螯合微粒材料IDAA-PGMA/SiO2. 本文研究了IDAA-PGMA/SiO2对重金属及稀土离子的螯合吸附行为, 深入地研究了吸附机理与吸附热力学. 研究结果表明: 凭借亚氨二乙酸基团与重金属离子之间的静电作用与配位螯合作用的协同, 复合微粒材料IDAA-PGMA/SiO2对重金属离子可产生强的螯合吸附作用, 尤其对Pb2+离子表现出很强的螯合吸附能力, 常温下吸附容量可达0.235 g·g-1; IDAA-PGMA/SiO2对重金属离子的吸附过程为一放热过程, 且为焓驱动的过程, 升高温度, 吸附容量降低; 对稀土离子的吸附过程则为熵驱动的过程; 在可抑制金属离子水解的pH范围内, 介质的pH值越高, IDAA-PGMA/SiO2的螯合吸附能力越强; IDAA-PGMA/SiO2对重金属离子的吸附容量远高于对稀土离子的吸附容量.  相似文献   

19.
(S)‐N‐(3,5‐dinitrobenzoyl)leucine‐N‐phenyl‐N‐propylamine‐bonded silica was used as a chiral stationary phase for separation of a set of racemic π‐acidic and π‐basic α‐amino acid amides in electrolyteless ACN‐water eluents by CEC in the RP and polar organic (PO) modes. The effect of the amount of water in the ACN‐water eluent on chiral separation was examined. As water is added to ACN, retention was shortened but resolution and selectivity deteriorated severely. Retention, enantioselectivity, and resolution factors obtained in 100% ACN were compared with those in an n‐hexane‐isopropanol eluent with a small amount of water by normal phase (NP) CEC. Much shorter retention times with comparable enantioselectivities were observed with 100% ACN, demonstrating the advantage of separation on (S)‐N‐(DNB)leucine‐N‐phenyl‐N‐propylamine‐bonded silica in PO‐CEC over NP‐CEC.  相似文献   

20.
《Comptes Rendus Chimie》2017,20(8):833-840
The surface of nanosized fumed silica (FSi) was modified with different amine groups by the use of silylating agents. The obtained propylamine, propylpiperazine, and propyl-p-phenylenediamine–modified FSi were treated with different sulfonyl chlorides to gain sulfonamide-modified FSi compounds. These compounds were characterized by various techniques including Fourier transform infrared spectroscopy, thermogravimetric analysis, differential thermal analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDX), confirming the grafted sulfonamides on the FSi surface. Sulfonamide-modified surfaces are efficient catalysts for the Michael addition-based syntheses and coupling reactions. Furthermore, the antibacterial tests showed that these modified FSi compounds have antibacterial activities and thus are useful materials for preparing antibacterial silicone-based compounds such as silicone glue and oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号