首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ellagic acid (EA), one of the polyphenols in fruits and nuts, has pharmacological activity. To explore binding behavior of EA to protein, human serum albumin (HSA) was chosen and investigated by fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and molecular modeling in aqueous solution. Fluorescence titration results indicated that EA effectively quenched the intrinsic fluorescence of HSA by static quenching and the binding process was spontaneous. According to the Scatchard equation, there was only one class of binding sites can bind to HSA, the binding constants at three different temperatures (298, 310 and 318 K) were 8.47 × 104, 7.39 × 104 and 6.00 × 104, respectively. It was found by FT-IR spectra that EA altered HSA secondary structure. Thermodynamic analysis showed that hydrophobic interaction and hydrogen bonds played an important role in stabilizing EA–HSA complex. A molecular docking study suggested that the HSA residues for EA binding located in sub-domain IIA.  相似文献   

2.
Hydroxycinnamic acid derivatives (HCAs) are a group of naturally occurring polyphenolic compounds which possess various pharmacological activities. In this work, the interactions of bovine serum albumin (BSA) with six HCA derivatives, including chlorogenic acid (CHA), caffeic acid (CFA), m-coumaric acid (m-CA), p-coumaric acid (p-CA), ferulic acid (FA) and sinapic acid (SA) have been investigated by NMR spectroscopic techniques in combination with fluorescence and molecular modeling methods. Competitive STD NMR experiments using warfarin sodium and L-tryptophan as site-selective probes indicated that HCAs bind to site I in the subdomain IIA of BSA. From the analysis of the STD NMR-derived binding epitopes and molecular docking models, it was deduced that CHA, CFA, m-CA and p-CA show similar binding modes and orientation, in which the phenyl ring is in close contact with protein surface, whereas carboxyl group points out of the protein. However, FA and SA showed slightly different binding modes, due to the steric hindrance of methoxy-substituents on the phenyl ring. Relaxation experiments provided detailed information about the relationship between the affinity and structure of HCAs. The binding affinity was the strongest for CHA and ranked in the order CHA > CFA > m-CA ≥ p-CA > FA > SA, which agreed well with the results from fluorescence experiments. Based on our experimental results, we also conclude that HCAs bind to BSA mainly by hydrophobic interaction and hydrogen bonding. This study therefore provides valuable information for elucidating the mechanisms of BSA-HCAs interaction.  相似文献   

3.
Cinnamic acid (CA) derivatives are known to possess broad therapeutic applications including anti-tumor activity. The present study was designed to determine the underlying mechanism and thermodynamic parameters for the binding of two CA based intramolecular charge transfer (ICT) fluorescent probes, namely, 4-(dimethylamino) cinnamic acid (DMACA) and trans-ethyl p-(dimethylamino) cinnamate (EDAC), with albumins by fluorescence spectroscopy. Stern-Volmer analysis of the tryptophan fluorescence quenching data in presence of the added ligand reveals fluorescence quenching constant (κ(q)), Stern-Volmer constant (K(SV)) and also the ligand-protein association constant (K(a)). The thermodynamic parameters like enthalpy (ΔH) and entropy (ΔS) change corresponding to the ligand binding process were also estimated. The results show that the ligands bind into the sub-domain IIA of the proteins in 1:1 stoichiometry with an apparent binding constant value in the range of 10(4) dm(3) mol(-1). In both the cases, the spontaneous ligand binding to the proteins occur through entropy driven mechanism, although the interaction of DMACA is relatively stronger in comparison with EDAC. The temperature dependence of the binding constant indicates the induced change in protein secondary structure.  相似文献   

4.
The interaction between human serum albumin (HSA) and two drugs - amlodipine and propranolol - was investigated using fluorescence, UV absorption and circular dichroism (CD) spectroscopy. In addition, the binding site was established by applying molecular modeling technique. Fluorescence data suggest that amlodipine will quench the intrinsic fluorescence of HSA; whereas propranolol enhances the fluorescence of HSA. The binding constants for the interaction of amlodipine and propranolol with HSA were found to be 3.63×10(5)M(-1) and 2.29×10(4)M(-1), respectively. The percentage of secondary structure feature of each one of the HSA-bound drugs, i.e. the α-helix content, was estimated empirically by circular dichroism. The results indicated that amlodipine causes an increase, and that propranolol leads to a decrease in α-helix content of HSA. The spectroscopic analysis indicates that the binding mechanisms of the two drugs are different from each other. The data obtained by the molecular modeling study indicated that these drugs bind, with different affinity, to different sites located in subdomain IIA and IIIA.  相似文献   

5.
A single high‐affinity fatty acid binding site in the important human transport protein serum albumin (HSA) is identified and characterized using an NBD (7‐nitrobenz‐2‐oxa‐1,3‐diazol‐4‐yl)‐C12 fatty acid. This ligand exhibits a 1:1 binding stoichiometry in its HSA complex with high site‐specificity. The complex dissociation constant is determined by titration experiments as well as radioactive equilibrium dialysis. Competition experiments with the known HSA‐binding drugs warfarin and ibuprofen confirm the new binding site to be different from Sudlow‐sites I and II. These binding studies are extended to other albumin binders and fatty acid derivatives. Furthermore an X‐ray crystal structure allows locating the binding site in HSA subdomain IIA. The knowledge about this novel HSA site will be important for drug depot development and for understanding drug‐protein interaction, which are important prerequisites for modulation of drug pharmacokinetics.  相似文献   

6.
Sudlow Site I of human serum albumin (HSA) is located in subdomain IIA of the protein and serves as a binding cavity for a variety of ligands. In this study, the binding of warfarin (W) is examined using computational techniques and isothermal titration calorimetry (ITC). The structure of the docked warfarin anion (W-) to Site I is similar to that revealed by X-ray crystallography, with a calculated binding constant of 5.8 x 10(5) M(-1). ITC experiments (pH 7.13 and I = 0.1) carried out in three different buffers (MOPs, phosphate and Tris) reveal binding of W- is accompanied by uptake of 0.30+/-0.02 protons from the solvent. This measurement suggests that the binding of W- is stabilized by an ion-pair interaction between protonated H242 and the phenoxide group of W-.  相似文献   

7.
In this work, the interaction between indomethacin (IM) and human serum albumin (HSA) under simulative physiological conditions was investigated by the methods of fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling. The experiment results showed that the fluorescence quenching of HSA by IM was a result of the formation of an IM–HSA complex and the corresponding association constants (K a) between IM and HSA at four different temperatures were determined according to the modified Stern–Volmer equation. The resulting thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures indicate that the hydrophobic force plays a major role for IM–HSA association, but hydrogen bonds also could not be excluded. A molecular modeling study further confirmed the binding mode and indicated that the binding of IM to HSA primarily takes place in sub-domain IIA (site I). The conformational investigation showed that the presence of IM decreased the α-helical content of HSA and induced slight unfolding of the polypeptides of protein, which confirmed that some microenvironmental and conformational changes occur for HSA molecules.  相似文献   

8.
Subdomain IIA binding site of human serum albumin (HSA) was characterized by examining the change in HSA fluorescence in the native, unfolded, and refolded states. The study was carried out in the absence and presence of small molecular probes using steady-state and time-resolved fluorescence measurements. 2-Pyridone, 3-pyridone, and 4-pyridone bear similar molecular structures to those found in many drugs and are used here as probes. They are found to specifically bind in subdomain IIA and cause a reduction in the fluorescence intensity and lifetime of the Trp-214 residue in native HSA which is located in the same subdomain. The efficiency of energy transfer from Trp-214 fluorescence to the probes was found to depend on the degree of the spectral overlap between the donor's fluorescence and the acceptor's absorption. After probe binding in subdomain IIA, the distance between the donor and acceptor was calculated using Forster theory. The calculated quenching rate constants and binding constants were also shown to depend on the degree of spectral overlap. The results point to a static quenching mechanism operating in the complexes. Denaturation of HSA in the presence of guanidine hydrochloride (GdnHCl) starts at [GdnHCl] > 1.0 M and is complete at [GdnHCl] > or = 6.0 M. Upon unfolding, two fluorescence peaks were observed. One peak was assigned to the fluorescence of Trp-214 in a polar environment, and the other peak was assigned to tyrosine fluorescence. A reduction of the fluorescence intensity of the two peaks upon binding of the probes to the denatured HSA indicates that Tyr-263 in subdomain IIA is one of the tyrosine residues responsible for the second fluorescence peak. The results were confirmed by measuring the fluorescence spectra and lifetimes of denatured HSA at different excitation wavelengths, and of L-tryptophan and L-tyrosine free in buffer. The measured lifetimes of denatured HSA are typical of tryptophan in a polar environment and are slightly reduced upon probe binding. Dilution of the denatured HSA by buffer results in a partial refolding of subdomain IIA. This partial refolding is attributed to some swelling of the binding site caused by water. The swelling prevents a full recovery from the denatured state.  相似文献   

9.
The binding mechanism of molecular interaction between 5-(ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (a dihydropyrimidinones derivative, EMPD) and human serum albumin (HSA) was studied using spectroscopic methods and modeling technique. The quenching mechanism was investigated in terms of the binding constants and the basic thermodynamic parameters. The results of spectroscopic measurements suggested that EMPD have a strong ability to quench the intrinsic fluorescence of HSA through static quenching procedure. The drug-protein complex was stabilized by hydrophobic forces and hydrogen bonding as indicated from the thermodynamic parameters and synchronous fluorescence spectra, which was consistent with the results of molecular docking and accessible surface area calculation. Competitive experiments indicated that a displacement of warfarin by EMPD, which revealed that the binding site of EMPD to HSA was located at the subdomains IIA. The distance between the donor and the acceptor was 4.85nm as estimated according to F?rster's theory of non-radiation energy transfer. The effect of metal ions on the binding constants was also investigated. The results indicated that the binding constants between EMPD and HSA increased in the presence of common metal ions.  相似文献   

10.
The interaction between juglone at the concentration range of 10–110 µM and bovine serum albumin (BSA) or human serum albumin (HSA) at the constant concentration of 11 µM was investigated by fluorescence and UV absorption spectroscopy under physiological-like condition. Performing the experiments at different temperatures showed that the fluorescence intensity of BSA/HSA was decreased in the presence of juglone by a static quenching mechanism due to the formation of the juglone–protein complex. The binding constant for the interaction was in the order of 103 M?1, and the number of binding sites for juglone on serum albumins was determined to be equal to one. The thermodynamic parameters including enthalpy (ΔH), entropy (ΔS) and Gibb’s free energy (ΔG) changes were obtained by using the van’t Hoff equation. These results indicated that van der Waals force and hydrogen bonding were the main intermolecular forces stabilizing the complex in a spontaneous association reaction. Moreover, the interaction of BSA/HSA with juglone was verified by UV absorption spectra and molecular docking. The results of synchronous fluorescence, UV–visible and CD spectra demonstrated that the binding of juglone with BSA/HSA induces minimum conformational changes in the structure of albumins. The increased binding affinity of juglone to albumin observed in the presence of site markers (digoxin and ibuprofen) excludes IIA and IIIA sites as the binding site of juglone. This is partially in agreement with the results of molecular docking studies which suggests sub-domain IA of albumin as the binding site.  相似文献   

11.
The binding of a lophine-based fluorescence probe, 4-[4-(4-dimethylaminophenyl)-5-phenyl-1H-imidazol-2-yl]benzoic acid methyl ester (DAPIM) with human serum albumin (HSA) was investigated by fluorescence spectroscopy under physiological conditions. While DAPIM shows extreme low fluorescence in aqueous solution, DAPIM binding with HSA emits strong fluorescence at 510 nm. The binding constant and binding number determined by Scatchard plot was 3.65 × 106 M−1 and 1.07, respectively. Competitive binding between DAPIM and other ligands such as warfarin, valproic acid, diazepam and oleic acid, were also studied fluorometrically. The results indicated that the primary binding site of DAPIM to HSA is site II at subdomain IIIA. DAPIM can be a useful fluorescence probe for the characterization of drug-binding sites. In addition to the interaction study, because the fluorescence intensity of DAPIM increased in proportion to HSA concentration, its potential in HSA assay for serum sample was also evaluated.  相似文献   

12.
The interactions of small molecule drugs with plasma serum albumin are important because of the influence of such interactions on the pharmacokinetics of these therapeutic agents. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) is one such drug candidate that has recently gained attention for its promising clinical applications as an anti-cancer agent. This study sheds light upon key aspects of AICAR’s pharmacokinetics, which are not well understood. We performed in-depth experimental and computational binding analyses of AICAR with human serum albumin (HSA) under simulated biochemical conditions, using ligand-dependent fluorescence sensitivity of HSA. This allowed us to characterize the strength and modes of binding, mechanism of fluorescence quenching, validation of FRET, and intermolecular interactions for the AICAR–HSA complexes. We determined that AICAR and HSA form two stable low-energy complexes, leading to conformational changes and quenching of protein fluorescence. Stern–Volmer analysis of the fluorescence data also revealed a collision-independent static mechanism for fluorescence quenching upon formation of the AICAR–HSA complex. Ligand-competitive displacement experiments, using known site-specific ligands for HSA’s binding sites (I, II, and III) suggest that AICAR is capable of binding to both HSA site I (warfarin binding site, subdomain IIA) and site II (flufenamic acid binding site, subdomain IIIA). Computational molecular docking experiments corroborated these site-competitive experiments, revealing key hydrogen bonding interactions involved in stabilization of both AICAR–HSA complexes, reaffirming that AICAR binds to both site I and site II.  相似文献   

13.
Human serum albumin (HSA) is a soluble protein in our circulatory system, which is known to bind a variety of drugs and ligands. Since Sudlow's pioneering works on the ligand-binding sites, a major effort of the biophysical/biochemical research has been directed to characterize the structural, functional, and dynamical properties of this protein. Structural studies on HSA have revealed distinct temperature-induced folded states. Despite knowing about the ligand-binding properties and residues important for the binding, less is understood about the temperature-dependent molecular recognition of the protein. Here, we have prepared thermally induced unfolded states of the protein and characterized those by circular dichroism (CD) and differential thermal analysis (DTA) techniques. The change in the globular structure of the protein as a consequence of thermal unfolding has also been characterized by dynamic light scattering (DLS) measurements. We have used two fluorescent ligands (4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl) 4H-pyran) (DCM; hydrophobic; neutral) and Nile blue (NB; cationic) of different natures to characterize the ligand-binding properties of the protein in the native and thermally unfolded states. The possible binding sites of the ligands have been characterized by competitive binding with other drug molecules having definite binding sites in HSA. Picosecond-resolved F?rster resonance energy transfer (FRET) studies along with steady-state and polarization-gated spectroscopies on the ligands in the protein reveal the dynamics of the binding sites at various temperatures. From the FRET studies, an attempt has been made to characterize the simultaneous binding of the two ligands in various temperature-dependent folded states of HSA.  相似文献   

14.
Numerous recent investigations have revealed that various synthetic as well as therapeutically active natural flavonoids possess novel luminescence properties that can serve as highly sensitive monitors for exploring their interactions with relevant physiological targets. Here we report a detailed study on the interactions of the model flavone, 7-hydroxyflavone (7HF) with the plasma protein human serum albumin (HSA), employing electronic absorption, fluorescence (steady state and time resolved) and induced circular dichroism (ICD) spectroscopy. The spectral data indicate that in the protein matrix, the neutral 7HF molecules are predominantly transformed to a conjugate anion (7HFA) by a proton abstraction in the ground state. The protein (HSA) environment induces dramatic enhancements in the fluorescence emission intensity, anisotropy (r) and lifetime (tau) values, as well as pronounced changes in the fluorescence excitation and emission profiles of the fluorophore. Moreover, evidence for efficient F?rster type resonance energy transfer (FRET, from tryptophan to 7HFA) is presented, from which we infer that the binding site of 7HF in HSA is proximal (estimated distance, R=23.6A) to the unique tryptophan - 214 residue present in the inter-domain (between IIA and IIIA domains) loop region of the protein. The binding constant (K=9.44x10(4)M(-1)) and the Gibbs free energy change (DeltaG=-28.33kJ/mol) for 7HFA-HSA interaction have been estimated from the emission data. Finally, the near-UV circular dichroism (CD) studies show that the electronic transitions of 7HF are strongly perturbed on binding to the chiral host (HSA), leading to the appearance of ICD bands. Implications of these results are discussed.  相似文献   

15.
Human serum albumin (HSA), the most prominent protein in blood plasma, is able to bind a wide range of endogenous and exogenous compounds. Among the endogenous ligands, HSA is a significant transporter of heme, the heme-HSA complex being present in blood plasma. Drug binding to heme-HSA affects allosterically the heme affinity for HSA and vice versa. Heme-HSA, heme, and their complexes with ibuprofen have been characterized by electronic absorption, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy. Comparison of the results for the heme and heme-HSA systems has provided insight into the structural consequences on the heme pocket of ibuprofen binding. The pentacoordinate tyrosine-bound heme coordination of heme-HSA, observed in the absence of ibuprofen, becomes hexacoordinate low spin upon ibuprofen binding, and heme dissociates at increasing drug levels. The electronic absorption spectrum and nu(Fe-CO)/nu(CO) vibrational frequencies of the CO-heme-HSA-ibuprofen complex, together with the observation of a Fe-His Raman mode at 218 cm(-1) upon photolysis of the CO complex and the low spin EPR g values indicate that a His residue is one of the low spin axial ligands, the sixth ligand probably being Tyr161. The only His residue in the vicinity of the heme Fe atom is His146, 9 A distant in the absence of the drug. This indicates that drug binding to heme-HSA results in a significant rearrangement of the heme pocket, implying that the conformational adaptability of HSA involves more than the immediate vicinity of the drug binding site. As a whole, the present spectroscopic investigation supports the notion that HSA could be considered as the prototype of monomeric allosteric proteins.  相似文献   

16.
Photophysical studies of 4-Dicyanomethylene-2,6-Dimethyl-4H-Pyran (DDP) dye with globular proteins, Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) were carried out in aqueous solution. An isosbestic point resulted on the addition of serum albumins, which signifies a complex or an equilibrium state of DDP dye with albumin. Addition of BSA to DDP dye results in a fluorescence enhancement accompanied with a significant hypsochromic shift, whereas with that of HSA, a fluorescence quenching with a considerable blue shift resulted. Excited state studies of DDP dye with serum albumins portray that the role of binding sites of dye with albumins vary considerably and the nature of interaction is presumably attributed to combined hydrogen-bonding and hydrophobic interactions. Molecular docking studies of DDP dye with albumins and two other derivatives 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) dye and 4-(Dicyanomethylene)-2-methyl-6-(4-t-buyl)-4H-pyran (DCT) dyes with BSA and HSA elucidates that the hydrogen-bonding interaction accompanied with several hydrophobic, pi–pi an pi–alkyl interactions coexist between dye and albumins. The binding energy, intermolecular energy and stability of the DDP, DCM and DCT dyes through docking techniques with albumins authenticate that the dye predominantly acts as hydrogen-bonding acceptor site and the protein molecule as the donor. DDP dye prefers to exist in four different binding sites of HSA, whereas, in the case of BSA, the most preferred site is found to be hydrophobic domain (site I). Interestingly, the most preferred site of DCT dye is III A subdomain of HSA, whereas DCM dye is oriented towards I B subdomain. DDP and DCT are smaller in size and reside in the domain preferred for smaller ligands (II A and IIIA) as resulted in several drugs-HSA interaction whereas DCM dye which is categorized as medium to larger ligand based on the extended structure resides in the most favoured site IB. Fluorescence techniques in combination with molecular docking methods elucidate binding characteristics and the domain in which the dye resides in a micro heterogeneous environment is established in this study.  相似文献   

17.
A benzimidazole derivative, 1-(2-picolyl)-3-(2-picolyl) benzimidazole iodide (PPB), was synthesized. Fourier transform infrared spectroscopy (FT-IR), UV–visible, three-dimensional (3D) fluorescence, synchronous fluorescence (SF) and fluorescence spectroscopic methods were used to determine the PPB binding mode and the effects of PPB on protein stability and secondary structure. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of PPB to human serum albumin (HSA). The binding constants between PPB and HSA were obtained according to Scatchard equation. The number of binding sites, the binding constants and the thermodynamic parameters were measured. The results showed a spontaneous binding of PPB to HSA through hydrogen bonds and van der Waals forces. In addition, the distance between PPB and the Trp 214 was estimated via employing the Förster's non-radiative energy transfer theory, and was found to be 3.49 nm, which indicated that PPB can bind to HSA with high probability. Site marker competitive experiments indicated that the binding of PPB to HSA primarily took place in subdomain IIA.  相似文献   

18.
Molecular Docking (Mol.dock) of resorcinol based acridinedione dyes (ADR1 and ADR2) with a globular protein, Human Serum Albumin (HSA) were carried out. Docking studies reveal that ADR2 dye binding with HSA is energetically more stable and feasible than ADR1 dye. ADR1 dye predominantly resides in site I and III of HSA rather than binding site II wherein, ADR1 dye acts as hydrogen bonding (HB) acceptor through its carbonyl oxygen. On the contrary, ADR2 dye resides in all the binding sites of HSA such that the dye acts as the HB donor through the NH hydrogen atom and the carbonyl oxygen of the amino acid acts as the HB acceptor. The stability of dye-protein complex in the presence of several non-steroidal anti-inflammatory drugs (NSAIDs) was carried out by employing specific site selective drugs (Sudlow binding site drugs). The energetics and the bimolecular interactions of various drugs with ADR1-HSA and ADR2-HSA were generated to ascertain the influence of drug and its governance on the binding affinity of dye-protein complex. Sudlow site I binding drugs were effective in decreasing the energetics of ADR1 dye-HSA complex whereas site II binding drugs predominantly decreases the affinity of ADR2 dye with HSA. However, the dyes efficiently displaces the site specific drugs from their specific binding sites of HSA which was not observed in the case of drugs on the displacing ability over dyes situated in different domains of protein. Mol.dock studies are employed as an authentic, reliable and most effective tool to ascertain the binding stability of host–guest complex as well as to ascertain the most probable location of several competing ligands in various domains of HSA.  相似文献   

19.
Human serum albumin (HSA) is a very important transporter protein in the circulatory system. It is a multi-domain binding protein, which binds a wide variety of ligands in its multiple binding sites and aids in transport, distribution and metabolism of many endogenous and exogenous ligands. With change in pH, HSA is known to undergo conformational transformation, which is very essential for picking up and releasing them at sites of differing pH inside physiological system. Hence, the characterization of ligand binding to these pH-induced conformers is extremely important. We have explored binding interaction of a ligand protoporphyrin IX (PPIX), which is demonstrated (X-ray crystallography) to reside in domain-IB at the various pH-induced folded states of HSA. The ligand PPIX is found to remain attached to all the HSA conformers which offers an opportunity to use Förster’s resonance energy transfer (FRET) between an intrinsic donor fluorophore (Trp214) located in domain-IIA to the acceptor ligand PPIX to characterize the inter-domain separation between IB and IIA. Additionally FRET between an extrinsic fluorophore 2-p-toluidinylnaphthalene-6-sulfonate (TNS) located in domain-IIIA and PPIX is also undertaken to quantify the inter-domain separation between IB and IIIA. Circular dichroism (CD) and dynamic light scattering (DLS) studies have been done in conjunction with picosecond time resolved fluorescence and polarization-gated spectroscopy to determine, respectively, the secondary and tertiary structures of various pH-induced folded states of the protein. Severe structural perturbation including swelling of the protein is observed in the low pH-induced conformer of HSA as evidenced from all the techniques used.  相似文献   

20.
The interaction between a novel promising pyridazinone derivative (5-chloro-2-nitro-N-(4-(6-oxo-1,4,5,6-tetrahydropyridazin-3-yl)phenyl)benzamide (CNPB)) and human serum albumin (HSA) under physiological conditions has been investigated systematically by fluorescence spectroscopy, UV absorption spectroscopy, circular dichroism (CD) and molecular modeling. From the spectra obtained, it was observed that CNPB had a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The site binding constants (K(b)) were 4.22 x 10(4) and 3.32 x 10(4)M(-1) at 290 and 300 K, respectively. The alterations of protein secondary structure in the presence of CNPB were qualitative and quantitative calculated by the results from CD and synchronous fluorescence. In addition, the thermodynamic standard enthalpy (DeltaH) and standard entropy (DeltaS) for the reaction were calculated to be -17.35 kJ mol(-1) and 9.57 J mol(-1)K(-1), respectively. These results showed that the binding of CNPB to HSA was mainly of hydrophobic interaction, but the hydrogen bonding and electrostatic interaction could not be excluded. Furthermore, the study of molecular modeling also indicated that CNPB could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between CNPB and the residue His242.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号