首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A simple, sensitive and selective LC-MS-MS method has been developed for the quantification of huperzine A in human plasma. Huperzine A and pseudoephedrine hydrochloride (internal standard) were isolated from human plasma by extraction with ethyl acetate, chromatographed on a C(18) column with a mobile phase consisting of 0.2% formic acid-methanol (15:85, v/v) and detected using a tandem mass spectrometer with an electrospray ionization interface. The lower limit of quantification was 0.0508 ng/mL, and the assay exhibited a linear range of 0.0508-5.08 ng/mL (r = 0.9998). The method was successfully applied to investigate the bioequivalence between two kinds of tablets (test vs reference product) in 18 healthy male Chinese volunteers. After a single 0.2 mg dose for the test and reference product, the resulting means of major pharmacokinetic parameters such as AUC(0-24), AUC(0-infinity), C(max), T(max) and t(1/2) of huperzine A were 16.35 +/- 3.42 vs 16.38 +/- 3.61 ng h/mL, 17.53 +/- 3.80 vs 17.70 +/- 3.97 ng h/mL, 2.47 +/- 0.49 vs 2.51 +/- 0.51 ng/mL, 1.3 +/- 0.4 vs 1.2 +/- 0.3 h and 5.92 +/- 0.75 vs 6.18 +/- 0.66 h, respectively, indicating that these two kinds of tablets were bioequivalent.  相似文献   

2.
A simple high-performance liquid chromatographic (HPLC) method was developed and validated for the quantification of mizoribine in human serum. After the addition of 70% perchloric acid and 3-methylxanthine (50 microg/mL, internal standard) to human serum, the samples were mixed and centrifuged at 12,000 rpm (1432 g) for 10 min. The supernatant was injected onto a C(18) column eluted with a mobile phase of 20 mm Na2HPO4 and methanol (93:7, v/v, pH 3) containing 0.04% octanesulfonic acid and detected utilizing an ultraviolet detector at 275 nm. The linear calibration curve was obtained in the concentration range of 0.1-4.0 microg/mL and the lower limit of quantification was 0.1 microg/mL. This method was validated with selectivity, linearity, precision and accuracy. In addition, the method was successfully applied to estimate the pharmacokinetic parameters of mizoribine in Korean subjects following an oral administration of 100 mg mizoribine (two Bredinine 50 mg tablets). The maximum serum concentration (C(max)) of 2.30 +/- 0.83 microg/mL was reached 2.27 +/- 0.66 h after an oral dose. The mean AUC(0-12 h) and the elimination half-life (t(1/2)) were 13.2 +/- 4.79 microg h/mL and 3.10 +/- 0.74 h, respectively.  相似文献   

3.
A rapid and sensitive liquid chromatography-tandem mass spectrometry method(LC-MS/MS)was developed and validated for the quantification of fexofenadine in human plasma,to conduct comparative bioavailability studies.Human plasma was extracted with a mixture of dichloromethane-diethyl ether(volume ratio 2∶3)in a basic environment and the extract was separated on a C18 column with a mobile phase consisting of acetonitrile-methanol-10 mmol/L ammonium acetate(volume ratio 45∶45∶10).The analytes were detected via electrospray ionization(ESI)tandem mass spectrometry in the multiple-reaction-monitoring(MRM)mode.The linearity was within a range of 1-1000 ng/mL.The intra-and inter-day precision were〈4.1% and〈4.8%,respectively,and the accuracy was in the range of 95.0%-105%.The method was applied to the quantification of fexofenadine human plasma from 20 healthy male Chinese volunteers,according to a single dose,randomized,two-way crossover design with a two-week washout period.The mean values of major pharmacokinetic parameters of ρmax,AUC0-48,AUC0-∞,tmax,and t1/2 were determined from the plasma concentration.The analysis of variance(ANOVA)did not show any significant difference between the two products of fexofenadine and 90% confidence intervals fell within the acceptable range for bioequivalence.  相似文献   

4.
A rapid and high sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed and validated for the quantification of zolpidem in human EDTA plasma using ondansetron (IS) as an internal standard. The analyte and IS were extracted from human plasma using ethyl acetate and separated on a C18 column (Inertsil-ODS, 5 μm, 4.6 × 50 mm) interfaced with a triple quadrupole tandem mass spectrometer. The mobile phase, which consisted of a mixture of methanol and 20 mM ammonium formate (pH 5.00 ± 0.05; 75:25 v/v), was injected at a flow rate of 0.40 mL/min. The retention times of zolpidem and IS were approximately 1.76 and 1.22. The LC run time was 3 min. The electrospray ionization source was operated in positive ion mode. Multiple reaction monitoring used the [M + H](+) ions m/z 308.13 → 235.21 for zolpidem and m/z 294.02 → 170.09 for the ondansetron, respectively. Five freeze-thaw cycles was established at -20 and -70°C.The linearity of the response/concentration curve was established in human EDTA plasma over the concentration range 0.10-149.83 ng/mL. The lower detection limit [(signal-to-noise (S/N) > 3] was 0.04 ng/mL and the lower limit of quantification (S/N > 10) was 0.10 ng/mL. This LC-MS-MS method was validated with intra-batch and inter-batch precision of 0.52-8.66.The intra-batch and inter-batch accuracy was 96.66-106.11. Recovery of zolpidem in human plasma was 87.00% and IS recovery was 81.60%. The primary pharmacokinetic parameters were T(max) (h) = (1.25 ± 0.725), C(max) (ng/mL) (127.80 ± 34.081), AUC(0→t), = (665.37 ± 320.982) and AUC(0→∞), 686.03 ± 342.952, respectively.  相似文献   

5.
A liquid chromatography/mass spectrometry method for simultaneous determination of paracetamol and dextropropoxyphene in human plasma is described. Paracetamol and dextropropoxyphene, together with their internal standards (tolbutamide and pyrroliphene), were extracted from 0.5 mL of plasma using solid-phase extraction. The chromatography was performed using a Thermo Hypersil APS-2 Amino column (250 mm x 4.6 mm, 5 microm) with a mobile phase consisting of acetonitrile and 0.4% glacial acetic acid in water (20:80). The total run time was 6 min for each sample. The triple-quadrupole mass spectrometer was operated in both positive (for detection of dextropropoxyphene and its IS pyrroliphene) and negative (for detection of paracetamol and its IS tolbutamide) modes using a polarity-switching technique. Multiple reaction monitoring was used for quantification. The method was linear over the concentration range of 0.1-20 microg/mL for paracetamol and 0.5-80 ng/mL for dextropropoxyphene. The intra- and inter-day precision were less than 10%, and the accuracy ranged from 92.2-110.9%. The lower limits of quantification were 0.1 microg/mL for paracetamol and 0.5 ng/mL for dextropropoxyphene. The present method provides a robust, fast and sensitive analytical tool for both paracetamol and dextropropoxyphene, and has been successfully applied to a clinical bioequivalence study in 14 subjects.  相似文献   

6.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method to determine carbocysteine in human plasma was developed and fully validated. After methanol-induced protein precipitation of the plasma samples, carbocysteine was subjected to LC/MS/MS analysis using electrospray ionization (ESI). The MS system was operated in the selected ion monitoring (SRM) mode. Chromatographic separation was performed on a Hypurity C18 column (i.d. 2.1 mm x 50 mm, particle size 5 microm). The method had a chromatographic running time of 2.0 min and linear calibration curves over the concentration ranges of 0.1-20 microg/mL for carbocysteine. The lower limit of quantification (LLOQ) of the method was 0.1 microg/mL for carbocysteine. The intra- and inter-day precision was less than 7% for all quality control samples at concentrations of 0.5, 2.0, and 10.0 microg/mL. These results indicate that the method was efficient with a simple preparation procedure and a very short running time (2.0 min) for carbocysteine compared with methods reported in the literature and had high selectivity, acceptable accuracy, precision and sensitivity. The validated LC/MS/MS method has been successfully used to a bioequivalence study of two tablet formulations of carbocysteine in healthy volunteers.  相似文献   

7.
A simple RP-HPLC method was established for the determination of salidroside in dog plasma. Salidroside is one of the most active ingredients of Rhodiola L. The method had within-run precision values in the range of +/- 2.3 to +/- 9.1% (n = 5) and between-run precision in the range of +/- 3.2 to +/- 9.8%. A simple protein precipitation for salidroside extraction was processed using ACN at precipitant-to-plasma volume ratio (P-P ratio) of 3:2. The extraction recoveries of salidroside at seven concentrations were higher than 63.2%. There was a linear relationship between chromatographic area and concentration over the range of 0.83-520 microg/mL for salidroside in plasma (R = 0.9926). The LOQ (S/N = 10) of the method was 0.83 microg/mL. The method was applied in a study of the pharmacokinetics of salidroside injection in six beagle dogs. The major pharmacokinetic parameters of C(max), AUC(0-24), AUC(0-infinity), and t(1/2) of salidroside in beagle dogs after i.v. administration of a single 75 mg/kg (5 mL/kg) dose were 96.16 +/- 8.59 microg/mL, 180.3 +/- 30.6 microg h/mL, 189.3 +/- 32.1 microg h/mL, and 2.006 +/- 0.615 h, respectively.  相似文献   

8.
Tricin is a flavone constituent of brown rice and rice bran, which interferes potently with the survival of human-derived breast and colon cancer cells in vitro. A specific and simple high-performance liquid chromatographic (HPLC) method was developed for the determination of tricin in human plasma with UV-visible detection. HPLC separation on Hypersil-BDS C(18) (4.6 x 250 mm) was carried out with an isocratic mobile phase of 52% methanol in 0.1 m ammonium acetate, pH 5.10, containing 0.27 mm disodium ethylenediamine tetraacetic acid and detection at 355 nm. The retention times of tricin and quercetin (internal standard) were 14.2 and 7.8 min, respectively. The assay was linear in the range 1-100 microg/mL (r(2 ) > or = 0.995). Tricin in plasma was efficiently extracted with 0.1 m acetic acid in acetone, and the recoveries were in the range 92.6-102.8% (n = 6) with relative standard deviation below 10% for three concentrations of tricin, 5, 10 and 100 microg/mL. The lower limit of quantitation (relative standard deviation <20%) was 1 microg/mL.  相似文献   

9.
A sensitive and selective liquid chromatographic-mass spectrometric (LC-MS) method for the determination of venlafaxine in human plasma has been developed. Samples were prepared using liquid-liquid extraction and analyzed on a C(18) column interfaced with a triple quadrupole mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase was methanol-water containing 10 mmol/L ammonium acetate, pH 7.9 adjusted with aqueous ammonia (80:20, v/v) at the flow rate of 1.0 mL/min. The analyte and internal standard clozapine were both detected by use of selected ion monitoring mode. The method was linear in the concentration range of 1.0-200.0 ng/mL. The lower limit of quantification (LLOQ) was 1.0 ng/mL. The intra- and inter-day relative standard deviation across three validation runs over the entire concentration range was less than 10.1%. The accuracy determined at three concentrations (5.0, 50.0 and 150.0 ng/mL for venlafaxine) was within +/-10.0% in terms of relative error (RE). The method was successfully applied for the evaluation of pharmacokinetic profiles of venlafaxine capsule in 20 healthy volunteers. The results show AUC, T(max), C(max) and T(1/2) between the testing formulation and reference formulation have no significant difference (p > 0.05). Relative bioavailability was 103.4 +/- 14.1%.  相似文献   

10.
E7070 (indisulam) is a novel anticancer drug currently undergoing clinical investigation. We present a sensitive and specific method for the quantitative determination of E7070 and its metabolite M1 (1,4-benzenedisulphonamide) in human plasma, urine and faeces. The analytes and their tetra-deuterated analogues, which were used as internal standards, were isolated from the biological matrix by solid-phase extraction with OASIS cartridges (0.5 mL plasma or 1 mL urine) and by liquid-liquid extraction with ethyl acetate at pH 5 (1 mL faecal homogenate). The analytes were separated on a C8 reversed-phase chromatographic column and analyzed using electrospray ionization and tandem mass spectrometric detection in the negative ion mode. The validated concentration ranges in plasma were 0.1-20 microg/mL for E7070 and 0.01-2 microg/mL for M1. In urine and faecal homogenate, a concentration range from 0.05-10 microg/mL or microg/g, respectively, was validated for both analytes. Validation of the plasma assay was performed according to the most recent FDA guidelines. The assay fulfilled all generally accepted requirements for linearity (r > 0.99, residuals between -8 and 10%), accuracy (-13.5 to 1.4%) and precision (all less than 11%) in the tested matrices. We investigated recovery, stability (working solutions at -20 degrees C and at room temperature, biological matrices at -20 degrees C, room temperature and after 3 freeze/thaw cycles; final extracts at room temperature) and robustness. All these parameters were found acceptable. This method is suited for mass balance studies or therapeutic drug monitoring, as demonstrated by a case example showing plasma concentrations and cumulative excretion of E7070 and M1 in urine and faeces. Furthermore, we show the presence of E7070 metabolites in patient urine.  相似文献   

11.
A sensitive liquid chromatography-mass spectrometric method was developed for the quantification of ipriflavone in human plasma. The method utilized liquid-liquid extraction of plasma with ethyl acetate. A gradient elution was performed on a Hedera ODS-2 column (150×2.1 mm i.d., 5 μm), using a mobile phase consisting of 0.1% formic acid solution and methanol at a flow rate of 0.5 mL/min. The single quadrupole mass spectrometer was operated in selected-ion monitoring mode via positive electrospray ionization interface detecting m/z 239.1 and 285.1 for ipriflavone and diazepam (the internal standard), respectively. To improve the selectivity and sensitivity, the fragment ion m/z 239.1, which was produced by in-source collision-induced dissociation, was chosen as the quantitative ion for ipriflavone. The method was fully validated and applied to a pharmacokinetic study of ipriflavone. After oral administration of a single 200 mg ipriflavone tablet, the C(max,) AUC(0-72 h) , t(1/2) and T(max) were 6.3±6.3 ng/mL, 80.0±69.1 μg h/L, 23.0±8.6 h and 3.4±2.1 h, respectively.  相似文献   

12.
A rapid and sensitive LC-MS-MS method for the quantitation of sertraline in human plasma was developed and validated. Sertraline and the internal standard, telmisartan, were cleaned up by protein precipitation from 100 μL of plasma sample, and analyzed on a TC-C18 column (5 μm, 150 × 4.6 mm i.d.) using 70% acetonitrile and 30% 10 mM ammonium acetate (0.1% formic acid) as mobile phase. The method was demonstrated to be linear from 0.1 ng/mL to 50 ng/mL with the lower limit of quantitation of 0.1 ng/mL. Intra- and inter-day precision were below 4.40% and 3.55%. Recoveries of sertraline at low, medium, and high levels were 88.0 ± 2.3%, 88.2 ± 1.9%, and 90.0 ± 2.0%, respectively. The method was successfully applied to a bioequivalence study of sertraline after a single oral administration of 50 mg sertraline hydrochloride tablets.  相似文献   

13.
A method based on solid-phase extraction (SPE) coupled to high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection was developed for the determination of stavudine in human serum, using didanosine as internal standard. The acquisition was performed in multiple reaction monitoring (MRM) mode. The method was linear over the studied range (10-2000 ng/mL), with r(2) > 0.99, and the run time was 4 min. The intra- and inter-assay precisions (%) were in the ranges 0.1-13.6 and 2.6-9.9, respectively, and the intra- and inter-assay accuracies were >92%. The absolute recoveries were approximately 100% (10 ng/mL), 98% (30 ng/mL), 105% (750 ng/mL) and 105% (1500 ng/mL). The limits of detection and quantitation were 4 and 10 ng/mL, respectively. The analytical method was applied to a bioequivalence study, in which 24 healthy adult volunteers (12 men) received single oral doses (40 mg) of reference and two test stavudine formulations, in an open, three-period, randomized, crossover protocol. The 90% confidence interval of the individual ratios (test formulation/reference formulation) for C(max) (peak serum concentration), AUC(0-10) and AUC(0-inf) (areas under the serum concentration vs. time curve from time zero to 10 h and to infinity, respectively), were in the range 80-125%, which supports the conclusion that the two test formulations are bioequivalent to the reference formulation with respect to the rate and extent of stavudine absorption.  相似文献   

14.
Cyproterone acetate [6-chloro-1beta,2beta-dihydro-17alpha-hydroxy- 3'H-cyclopropa(1,2)-pregna-1,4,6-triene-3,20-dione acetate] is a powerful antiandrogen used in the treatment of women suffering from disorders associated with androgenization such as hirsutism and acne. A fast, sensitive, and robustness method is developed for the determination and quantitation of cyproterone acetate in human blood plasma by liquid chromatography coupled with tandem mass spectrometry. Cyproterone acetate is extracted from 0.2 mL human plasma by liquid-liquid extraction. The method has a chromatographic run of 4.5 min, using a C18 analytical column (100- yen 2.1-mm i.d.), and the linear calibration curve over the range is linear from 1 to 500 ng/mL (r2 > 0.994). The between-run precision, based on the relative standard deviation replicate quality controls, is 96.2% (3 ng/mL), 97.5% (120 ng/mL), and 99.1% (400 ng/mL). The between-run accuracy was +/- 2.7%, 3.1%, and 4.8% for the previously mentioned concentrations, respectively. The method is employed in a bioequivalence study of two tablet formulations of cyproterone acetate (100 mg).  相似文献   

15.
A simple and selective HPLC assay was developed and utilized for determination of human plasma protein binding of baicalin. The method involved solid-phase extraction and reversed-phase chromatographic separation with a mobile phase of acetonitrile-0.02 mol/L phosphate buffer (pH 2.5; 25:75, v/v) and UV detection at 276 nm. The standard curve for baicalin was linear over the concentration range 0.1-20 microg/mL and the limit of detection was 0.02 microg/mL. The absolute recovery was greater than 76%. The intra-day and inter-day variations were less than 10%. Ultrafiltration technique was applied to determining the plasma protein binding of baicalin in human plasma. Results show the plasma protein binding of baicalin was in the range 86-92% over all the concentrations studied and the protein binding association constant was determined to be 1.21 x 10(5) L/mol at 4 degrees C.  相似文献   

16.
A liquid chromatography/mass spectrometry method, for rapid determination of five cytochrome P450 (CYP) probe drugs and their relevant metabolites in human plasma and urine, is described. The five specific probe substrates/metabolites, caffeine/paraxanthine (CYP1A2), tolbutamide/4-hydroxytolbutamide/carboxytolbutamide (CYP2C9), omeprazole/5-hydroxyomeprazole (CYP2C19), debrisoquine/5-hydroxydebrisoquine (CYP2D6) and midazolam/1'-hydroxymidazolam (CYP3A), together with the internal standards (phenacetin and paracetamol), in plasma and urine, were extracted using solid-phase extraction. The chromatography was performed using a C18 column with an isocratic mobile phase consisting of acetonitrile and 0.1% formic acid in water (70:30). The triple-quadrupole mass spectrometer was operated in both positive and negative modes, and multiple reaction monitoring was used for quantification. The method was validated over the concentration ranges 0.05-5 microg/mL for caffeine and paraxanthine, 0.02-2 microg/mL for tolbutamide, 0.1-20 microg/mL for 4-hydroxytolbutamide, carboxytolbutamide, debrisoquine and 5-hydroxydebrisoquine, 5-2500 ng/mL for omeprazole and 5-hydroxyomeprazole, and 1-100 ng/mL for midazolam and 1'-hydroxymidazolam. The intra- and inter-day precision were 0.3-13.7% and 1.9-14.3%, respectively, and the accuracy ranged from 93.5-107.2%. The lower limit of quantification varied between 1 and 100 ng/mL. The present method provides a robust, fast and sensitive analytical tool for the five-probe drug cocktail, and has been successfully applied to a clinical phenotyping study in 16 subjects.  相似文献   

17.
A high-performance liquid chromatography method with fluorescence detection (HPLC-FLD) for the determination of levofloxacin in human plasma is described. Neutralized with phosphate buffer (pH 7.0), the sample (0.1 mL) was extracted with dichlormethane (1 mL). After voltex-mixing and centrifuged at 3000g for 6 min at 4 degrees C, the upper aqueous layer was aspirated using a micro vacuum pump and the organic layer was directly transferred to a clean test tube without pipetting. The organic solvent was evaporated and the residues were reconstituted with the mobile phase. Levofloxacin and terazosin (internal standard, IS) were chromatographically separated on a C(18) column with a mobile phase containing phosphate buffer (pH 3.0, 10 mm), acetonitrile and triethylamine (76:24:0.076, v/v/v) at a flow rate of 1 mL/min. The analytes were detected using fluorescence detection at an excitation and emission wavelength of 295 and 440 nm, respectively. The linear range of the calibration curves was 0.0521-5.213 microg/mL for levofloxacin with a lower limit of quantitation (0.0521 microg/mL). The retention times of levofloxacin and terazosin were 2.5 and 3.1 min, respectively. Within- and between-run precision was less than 12 and 11%, respectively. Accuracy ranged from -6.3 to 4.5%. The recovery ranged from 86 to 89% at the concentrations of 0.0521, 0.5213 and 5.213 microg/mL. The present HPLC-FLD method is sensitive, efficient and reliable. The method described herein has been successfully used for the pharmacokinetic and bioequivalence studies of a levofloxacin formulation product after oral administration to healthy Chinese volunteers.  相似文献   

18.
A rapid, sensitive and specific LC‐MS/MS method was developed and validated for quantifying chlordesmethyldiazepam (CDDZ or delorazepam), the active metabolite of cloxazolam, in human plasma. In the analytical assay, bromazepam (internal standard) and CDDZ were extracted using a liquid‐liquid extraction (diethyl‐ether/hexane, 80/20, v/v) procedure. The LC‐MS/MS method on a RP‐C18 column had an overall run time of 5.0 min and was linear (1/x weighted) over the range 0.5–50 ng/mL (R > 0.999). The between‐run precision was 8.0% (1.5 ng/mL), 7.6% (9 ng/mL), 7.4% (40 ng/mL), and 10.9% at the low limit of quantification—LLOQ (0.500 ng/mL). The between‐run accuracies were 0.1, –1.5, –2.7 and 8.7% for the above mentioned concentrations, respectively. All current bioanalytical method validation requirements (FDA and ANVISA) were achieved and it was applied to the bioequivalence study (Cloxazolam—test, Eurofarma Lab. Ltda and Olcadil®— reference, Novartis Biociências S/A). The relative bioavailability between both formulations was assessed by calculating individual test/reference ratios for Cmax, AUClast and AUC0‐inf. The pharmacokinetic profiles indicated bioequivalence since all ratios were as proposed by FDA and ANVISA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A simple, sensitive and selective high-performance liquid chromatographic (HPLC) method with UV detection (306 nm) was developed and validated for determination of tenatoprazole, a novel proton-pump inhibitor, in dog plasma. Tenatoprazole and internal standard (pantoprazole) were extracted into diethyl ether and separated using an isocratic mobile phase of 10 mm phosphate buffer (pH4.7)-acetonitrile (70:30, v/v) on a Diamonsil C(18) column (150 x 4.6 mm, 5 microm). The retention times for tenatoprazole and internal standard were 7.1 and 12.3 min, respectively. No endogenous interferences were observed. This HPLC method was fully validated. The lower limit of quantitation was 20 ng/mL, with a relative standard deviation of less than 20%. A linear range of 0.02-5.0 microg/mL was established. The interday and intraday precisions were within RSD 13.4-10.1 and 4.6-1.4%, respectively. This method developed can be easily applied to the pharmacokinetic study of tenatoprazole in dog plasma after oral administration of an enteric-coated capsule. The plasma concentration of tenatoprazole from six dogs showed a mean C(max) of 2.63 microg/mL at T(max) of 1.89 h. The bioavailability of tenatoprazole was improved by administration of enteric-coated capsule.  相似文献   

20.
A rapid, simple and validated liquid chromatography coupled to tandem mass spectrometric method (LC-MS/MS) for topiramate analysis in human plasma has been applied to pharmacokinetic and bioequivalence studies in 24 healthy male Korean volunteers. The procedure involves a simple liquid extraction of topiramate and prednisone (internal standard) with acetonitrile and separation by HPLC equipped with a Capcell Pak C18 column using acetonitrile-0.1% triethylamine (80:20, v/v) as a mobile phase. Detection was carried out on an API 2000 MS system by multiple reactions monitoring mode. The ionization was optimized using ESI(-) and selectivity was achieved by MS/MS analysis, m/z 338.0 --> 77.5 and m/z 357.1 --> 327.2 for topiramate and prednisone, respectively. The method had a total run time of 2.5 min and showed good linearity over a working range of 20-5000 ng/mL in human plasma with a lower limit of quantification of 20 ng/mL. No metabolic compounds were found to interfere with the analysis. The inter-day and intra-day accuracy were in the ranges of 99.24-116.63 and 93.45-108.68%, respectively, and inter-day and intra-day precisions were below 6.24 and 5.25%, respectively. This method was successfully applied for pharmacokinetic and bioequivalence studies by analysis of blood samples taken up to 96 h after an oral administration of 100 mg of topiramate in 24 healthy Korean volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号