首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
纳米硅薄膜的低温电输运机制   总被引:5,自引:0,他引:5       下载免费PDF全文
在很宽的温度范围(500—20K)研究了本征和不同掺磷浓度的纳米硅薄膜的电输运现象.发现 原先的异质结量子点隧穿(HQD)模型能很好地解释薄膜在高温下(500—200K)的电导曲线,但 明显偏离低温下的实验值.低温电导(100—20K)具有单一的激活能W,并与kBT值 大小相当(W~1—3kBT),呈现出Hopping电导的特征.对HQD模型做了修正,认为 纳米硅同时存在两种输运机制:热激发辅助的电子隧穿和费米能级附近定域态之间的Hoppin g电导.高温时(T 关键词: 纳米硅薄膜 低温电导 电输运  相似文献   

2.
An important issue regarding DNA electrical conductivity is the electron (hole) transfer rate. Experiments have found that this transfer rate involves quantum mechanical tunneling for short distances and thermally activated hopping over large distances. The electron (or hole) tunneling probability through a molecule depends on the length of molecule L, as e(-beta(E)L), where the tunneling betaE factor is strongly energy dependent. We have calculated betaE in DNA for poly(dA)-poly(dT) and poly(dG)-poly(dC) for the first time using a complex band structure approach. Although the DNA band gap is not exceptionally large, we find that the very large beta value near midgap makes DNA a poor tunneling conductor. The tunneling decay in DNA is more rapid than many other organic molecules, including those with a far wider gap.  相似文献   

3.
The temperature and magnetic-field dependences of the conductivity associated with hopping transport of holes over a 2D array of Ge/Si(001) quantum dots with various filling factors are studied experimentally. A transition from the Éfros-Shklovski? law for the temperature dependence of hopping conductivity to the Arrhenius law with an activation energy equal to 1.0–1.2 meV is observed upon a decrease in temperature. The activation energy for the low-temperature conductivity increases with the magnetic field and attains saturation in fields exceeding 4 T. It is found that the magnetoresistance in layers of quantum dots is essentially anisotropic: the conductivity decreases in an increasing magnetic field oriented perpendicularly to a quantum dot layer and increases in a magnetic field whose vector lies in the plane of the sample. The absolute values of magnetoresistance for transverse and longitudinal field orientations differ by two orders of magnitude. The experimental results are interpreted using the model of many-particle correlations of holes localized in quantum dots, which lead to the formation of electron polarons in a 2D disordered system.  相似文献   

4.
We have prepared the composite of polyaniline nanorods with copper chloride by chemical oxidative polymerization of aniline. Introduction of copper chloride in polyaniline significantly increases the conductivity of the nanocomposite. Temperature dependence of resistivity for our sample is best fitted with the quasi-one-dimensional hopping model and also the tunneling model. Negative magnetoconductivity is obtained for the samples at room temperature. Temperature variation of ac conductivity can be explained in terms of correlated barrier hopping model. Frequency dependence of the real part of impedance is explained by the Maxwell-Wagner capacitor model. Two activation behaviors are observed from the analysis of grain and grain boundary contributions.  相似文献   

5.
The temperature dependence of lateral conductivity and hole mobility in boron doped Si/SiGe/Si quantum well structures were studied. The conductivity at the temperatures below 20 K is shown to be due to hopping over B centers while at higher temperatures it is due to two-stage excitation consisting of thermal activation of holes from the ground to strain-split B states and the next hole tunneling into the valence band.  相似文献   

6.
We review and compare two models recently used to describe electronic transport in polymer fibers/nanotubes and carbon nanotubes including graphene nanoribbons, namely, variable range hopping (VRH) in different versions and their modifications on the one hand and electric-field-induced phonon-assisted tunneling (PhAT) on the other hand. The VRH model is mainly approved on behalf of the results of temperature dependences. However, the field dependencies of the conductivity in the framework of this model remain practically unexplained. At the same time, the PhAT model describes properly not only temperature dependence of conductivity measured in a wide temperature range, but also conductivity/current dependences on field strength using the same set of parameters characterizing the materials  相似文献   

7.
The nature of variable range hopping (VRH) conductivity which is observed in the insulating state of doped rare-earth manganites with perovskite structure is considered in the two component model of metallic-like droplets embedded in dielectric matrix. When the density of the metallic droplets is less than the percolation limit, the system falls into the insulating state with VRH conductivity defined by inter granular tunneling and electrostatic barriers. With temperature increasing the VRH regime is transforming into the hopping regime of small radius polarons.  相似文献   

8.
Injection of tunneling electrons and holes from the probe tips of a scanning tunneling microscope was found to enhance the hopping motion of Cl atoms between neighboring dangling-bond sites of Si dimers on Si(1 0 0)-(2 × 1) surfaces, featured by the rate of hopping linearly dependent on the injection current. The hopping rate formed peaks at sample biases of VS∼+1.25 and −0.85 V, which agree with the peaks in the local density of states spectrum measured by scanning tunneling spectroscopy. The Cl hopping was enhanced at Cl-adsorbed sites even remote from the injection point. The Cl hopping by hole injection was more efficiently enhanced by sweeping the tip along the Si dimer row than by tip-sweeping along the perpendicular direction. Such anisotropy, on the other hand, was insignificant in the electron injection case. All of these findings can be interpreted by the model that the holes injected primarily into a surface band originated from the dangling bonds of Si dimers propagate quite anisotropically along the surface, and become localized at Cl sites somehow to destabilize the Si-Cl bonds causing hopping of the Cl atoms. The electrons injected into a bulk band propagate in an isotropic manner and then get resonantly trapped at Si-Cl antibonding orbitals, resulting in bond destabilization and hopping of the Cl atoms.  相似文献   

9.
Electrical complex ac conductivity of the compound Li0.9[Ni1/3Mn1/3Co1/3]O1.95 has been studied in the frequency range 10 Hz–2 MHz and in the temperature range 93–373 K. It has been observed that the frequency dependence of the ac conductivity obeys a power law and the temperature dependence of the ac conductivity is quite weak. The experimental data have been analyzed in the framework of several theoretical models based on quantum mechanical tunneling and classical hopping over barriers. It has been observed that the electron tunneling is dominant in the temperature range from 93 K to 193 K. A crossover of relaxation mechanism from electron tunneling to polaron tunneling is observed at 193 K. Out of the several models discussed, the electron tunneling and the polaron tunneling models are quite consistent with the experimental data for the complex ac conductivity. The various parameters obtained from the fits of the experimental results for the real and imaginary parts of the conductivity to the predictions of these models are quite reasonable.  相似文献   

10.
In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole) s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping magnetoresistance to states with nonzero orbital momenta. Different from s states, a weak magnetic field expands the electron (hole) wave functions with positive magnetic quantum numbers, m>0, and shrinks the states with negative m in a wide region outside the point defect. This together with a magnetic-field dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-field magnetoresistance in disordered π-conjugated organic materials.  相似文献   

11.
Patterns in temperature and magnetic field behavior of the electrical resistance of nanocomposite consisting of “insulating matrix (7 nm-pore alkali-borosilicate glass)” – “granular metallic filler (indium)” (PG7+In) has been found and analyzed in the vicinity of superconducting transition. Insulating behavior in the electrical resistivity has been observed in a normal state. External magnetic field shifts the transition to lower temperatures and the same time gradually strengths the insulating behavior above the superconducting transition. Hopping conductivity mechanism developed for the granular conductor systems can be responsible for the insulating behavior in normal-state electrical resistance. Electron hopping in the granular conductor system is realized as tunneling of electrons through intergranular contacts between the metallic granules. The superconducting transition has been found to be rather broad. Broadening in the superconducting transition can be attributed to fluctuation conductivity. Above the superconducting transition, the Aslamazov-Larkin contribution to the conductivity characteristic for three-dimensional systems has been found to be main correction to the conductivity.  相似文献   

12.
A canonical ensemble model for a R-N black hole quantum tunneling radiation is introduced in this paper. We discover that the probability distribution function is equal to the emission rate of a spherical shell in the Parikh-Wilczek tunneling framework. Taking the generalized uncertainty principle into account, the probability distribution function corresponding to the emission shell system can be calculated with this model. As a result the concrete quantum tunneling spectrum for a R-N black hole is obtained.  相似文献   

13.
The X-ray powder diffraction patterns shows that at room temperature [N(CH3)3H]CdCl3 crystallizes in the orthorhombic system with the Pbnm space group. The analysis of the data revealed the existence of optical allowed direct transition mechanisms with the band gap energy equal to 5.3 eV. The temperature dependences of the real part of dielectric permittivity show a relaxation process at high temperature that can be explained by the reorientational motion of alkyl chains. The alternative current (AC) electrical conduction in compound is governed by three processes, which can be attributed to several models: the correlated barrier hopping (CBH) model in phases I and II, the non-overlapping small polaron tunneling (NSPT) model in phases III and IV.  相似文献   

14.
The complex conductivity of La2CuO4+δ has been investigated for frequencies 20 Hz≤ν≤4 GHz and temperatures 1.5K≤T≤450 K. Two single crystals with δ≈0 and δ≈0.02 were investigated, using dc (four-probe), reflectometric and contact-free techniques. At high temperatures the dc conductivity is thermally activated with low values of the activation energy. For low temperatures Mott's variable range hopping dominates. The real and imaginary parts of the ac conductivity follow a power-law dependence σ~v s, typical for charge transport by hopping processes. A careful analysis of the temperature dependence of the ac conductivity and of the frequency exponents has been performed. It is not possible to explain all aspects of the ac conductivity in La2CuO4+δ by standart hopping models. However, the observed minimum in the temperature dependence of the frequency exponents strongly suggests tunneling of large polarons as dominant transport process.  相似文献   

15.
Tunneling differential conductivity (or resistivity) is a sensitive tool to experimentally test the non-Fermi liquid behavior of strongly correlated Fermi systems. In the case of common metals the Landau–Fermi liquid theory demonstrates that the differential conductivity is a symmetric function of bias voltage V. This is because the particle–hole symmetry is conserved in the Landau–Fermi liquid state. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition, its Landau–Fermi liquid properties disappear so that the particle–hole symmetry breaks making the differential tunneling conductivity to be asymmetric function of V. This asymmetry can be observed when a strongly correlated metal is in its normal, superconducting or pseudogap states. We show that the asymmetric part of the dynamic conductance does not depend on temperature provided that the metal is in its superconducting or pseudogap states. In normal state, the asymmetric part diminishes at rising temperatures. Under the application of magnetic field the metal transits to the Landau–Fermi liquid state and the differential tunneling conductivity becomes a symmetric function of V. These findings are in good agreement with recent experimental observations.  相似文献   

16.
We investigate the intrinsic spin Hall conductivity (SHC) and the d-orbital Hall conductivity (OHC) in metallic d-electron systems, by focusing on the t2g-orbital tight-binding model for Sr2MO4 (M=Ru, Rh, Mo). The conductivities obtained are one or 2 orders of magnitude larger than predicted values for p-type semiconductors with approximately 5% hole doping. The origin of these giant Hall effects is the "effective Aharonov-Bohm phase" that is induced by the d-atomic angular momentum in connection with the spin-orbit interaction and the interorbital hopping integrals. The huge SHC and OHC generated by this mechanism are expected to be ubiquitous in multiorbital transition metal compounds, which opens the possibility of realizing spintronics as well as "orbitronics" devices.  相似文献   

17.
Scanning electron microscopy (SEM), X- ray diffraction (XRD), density (d), oxygen molar volume (Vm) and dc conductivity of different compositions of calcium vanadate glasses are reported. SEM exhibits a surface without any presence of a microstructure which is a characteristic of the amorphous phase. The overall features of these XRD curves confirm the amorphous nature of the present glasses. Density was observed to decrease with an increase in V2O5 content. The experimental results were analyzed with reference to theoretical models existing in the literature. It has been observed that the high-temperature conductivity data are consistent with Mott's nearest-neighbor hopping model. However, both Mott variable-range hopping (VRH) and Greaves intermediate range hopping models are found to be applicable. The hopping at high temperatures in the calcium vanadate glasses occurs by non-adiabatic process in contrast to the vanadate glasses formed with conventional network formers. The hopping model of Schnakenberg can predict the temperature dependence of the conductivity data. The percolation model of Triberis and Friedman applied to the small polaron hopping (SPH) regime is also consistent with data. The various model parameters such as density of states, hopping energy, etc., obtained from the best fits were found to be consistent with the glass compositions.  相似文献   

18.
一种纳米硅薄膜的传导机制   总被引:16,自引:1,他引:15       下载免费PDF全文
何宇亮  余明斌  胡根友  张蔷 《物理学报》1997,46(8):1636-1644
基于对实验和理论的分析,提出一种异质结量子点隧穿(HQD)模型,并导出了纳米硅薄膜电导率完整的表达式.其主要思想是,纳米硅薄膜中的微晶粒(几个纳米大小)具有量子点特征,在微晶粒与界面之间由于两者能隙的差异构成晶间势垒,这类似于多晶硅中经常使用的晶间势垒模型(GBT).考虑到量子点中的单电子隧穿特征,认为纳米硅薄膜中的电传导是由微晶粒中电子弹道式输运与单电子越过势垒的隧穿构成的.这就是HQD模型的主要内容,理论结果与实验相符 关键词:  相似文献   

19.
Experimental data are analyzed on the hopping transport of holes in two-dimensional layers of Ge/Si(001) quantum dots (QDs) under conditions of the long-range Coulomb interaction of charge carriers localized in QDs, when the temperature dependence of the conductivity obeys the Efros-Shklovskii law. It is found that the parameters of hopping conduction significantly deviate from the predictions of the model of one-electron excitations in “Coulomb glasses.” Many-particle Coulomb correlations associated with the motion of holes localized in QDs play a decisive role in the processes of hopping charge transfer between QDs. These correlations lead to a substantial decrease in the Coulomb barriers for the tunneling of charge carriers.  相似文献   

20.
It is predicted that at room temperatures a hopping mechanism of charge transfer plays a very important role and leads to temperature oscillations of the conductivity σ(T) of a dielectric composite. The dependence of the conductivity σ(ω) on the frequency of an alternating electric field is calculated. The relation obtained can be used to determine, first, the electron relaxation times and, second, and more importantly, the frequency of electron tunneling through the dielectric matrix from measurements of the conductivity in various frequency ranges. Zh. Tekh. Fiz. 69, 31–34 (March 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号