首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
为了提高壳聚糖的多染料吸附性能并使其便于固液分离,采用共沉淀法制备了壳聚糖、磁铁矿纳米颗粒、氧化石墨烯复合磁性吸附剂(CS/Fe3O4/GO)。系统的结构表征显示,CS包覆的Fe3O4磁性纳米颗粒均匀地分布在GO的表面。CS/Fe3O4/GO具有高达42.5 emu·g-1的室温铁磁性,因此可在外加磁场中实现高效固液分离。研究表明,CS/Fe3O4/GO对亚甲基蓝(MB)、甲基橙(MO)和刚果红(CR)等多种染料具有良好的吸附性能,溶液的pH、初始浓度和吸附时间对其多染料吸附性能具有显著影响。在最佳条件下,CS/Fe3O4/GO对MB、MO和CR的吸附量分别达到210.6、258.6和308.9 mg·g-1。CS/Fe3O4/GO具有优异的循环利用性能,经5次循环后仍能保留90%以上的原始吸附量。采用吸附等温线和吸附动力学对CS/Fe3O4/GO的多染料吸附性能进行了拟合分析,并详细讨论了其吸附机理。  相似文献   

2.
We described a novel and eco-friendly approach to remove toxic heavy metal of Pb(II) by using dimercaptosuccinic acid (DMSA) anchored Fe3O4 magnetic nanorods (MNRs) which were synthesized via facile method utilizing Punica Granatum rind extract which was a non toxic waste material. The DMSA@Fe3O4 MNRs were characterized by X-ray diffraction (XRD), Fourier transformed infrared analysis (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), nitrogen adsorption and desorption techniques, and vibrating sample magnetometer (VSM). These DMSA@Fe3O4 MNRs have been used for the removal of Pb(II) from aqueous solution. The adsorption isotherm data fitted well with Langmuir isotherm and Freundlich model, the monolayer adsorption capacity was found to be 46.18 mg/g at 301 K. The experimental kinetic data fitted very well with the pseudo-second-order model. The results indicate that the biogenic synthesized DMSA@Fe3O4 MNRs act as significant adsorbent material for removal of Pb (II) from aqueous environment.  相似文献   

3.
为了提高壳聚糖的多染料吸附性能并使其便于固液分离,采用共沉淀法制备了壳聚糖、磁铁矿纳米颗粒、氧化石墨烯复合磁性吸附剂(CS/Fe3O4/GO)。系统的结构表征显示,CS包覆的Fe3O4磁性纳米颗粒均匀地分布在GO的表面。CS/Fe3O4/GO具有高达42.5 emu·g-1的室温铁磁性,因此可在外加磁场中实现高效固液分离。研究表明,CS/Fe3O4/GO对亚甲基蓝(MB)、甲基橙(MO)和刚果红(CR)等多种染料具有良好的吸附性能,溶液的pH、初始浓度和吸附时间对其多染料吸附性能具有显著影响。在最佳条件下,CS/Fe3O4/GO对MB、MO和CR的吸附量分别达到210.6、258.6和308.9 mg·g-1。CS/Fe3O4/GO具有优异的循环利用性能,经5次循环后仍能保留90%以上的原始吸附量。采用吸附等温线和吸附动力学对...  相似文献   

4.
Nanostructured carbon-based materials, such as carbon nanotube arrays have shown respectable removal ability for heavy metal ions and organic dyes in aqueous solution. Although the carbon-based materials exhibited excellent removal ability, the separation of them from the aqueous solution is difficult and time-consuming. Here we demonstrated a novel and facile route for the large-scale fabrication of Fe3O4@C hollow nanospheres, with using ferrocene as a single reagent and SiO2 as a template. The as-prepared Fe3O4@C hollow nanospheres exhibited adsorption ability for heavy metal ions and organic dyes from aqueous solution, and can be easily separated by an external magnet. When the as-prepared Fe3O4@C hollow nanospheres were mixed with the aqueous solution of Hg2+ within 15 min, the removal efficiency was 90.3%. The as-prepared Fe3O4@C hollow nanospheres were also exhibited a high adsorption capacity (100%) as the adsorbent for methylene blue (MB). In addition, the as-prepared Fe3O4@C hollow nanospheres can be used as the recyclable sorbent for water treatment via a simple magnetic separation.  相似文献   

5.
Fe3O4 magnetic nanoparticles were synthesized by co-precipitation method. The structural characterization showed an average nanoparticle size of 8 nm. The synthesized Fe3O4 nanoparticles were tested for the treatment of synthetic aqueous solutions contaminated by metal ions, i.e. Pb(II), Cu(II), Zn(II) and Mn(II). Experimental results show that the adsorption capacity of Fe3O4 nanoparticles is maximum for Pb(II) and minimum for Mn(II), likely due to a different electrostatic attraction between heavy metal cations and negatively charged adsorption sites, mainly related to the hydrated ionic radii of the investigated heavy metals. Various factors influencing the adsorption of metal ions, e.g., pH, temperature, and contacting time were investigated to optimize the operating condition for the use of Fe3O4 nanoparticles as adsorbent. The experimental results indicated that the adsorption is strongly influenced by pH and temperature, the effect depending on the different metal ion considered.  相似文献   

6.
In this work, a novel Fe3O4/graphene oxide (GO) hybrid was prepared and its removal ability of cationic methylene blue dye from water was investigated. To improve the dispersability of Fe3O4/GO hybrid in water, GO was first modified by polyethylene glycol (PEG) via a click approach before deposition of Fe3O4 nanoparticles onto its surface. The successful modification of GO surface and the deposition of Fe3O4 nanoparticles were confirmed by transmission electron microscopy directly. The saturation magnetization of the resultant Fe3O4/GO hybrid is 7.8 eum/g. The adsorption capacities of Fe3O4/GO hybrid for methylene blue at 35 and 60°C were as high as 96.05 and 120.05 mg/g, respectively. Moreover, the Langmuir, Freundlich, and Temkin models are used to investigate the isothermal adsorption behavior of Fe3O4/GO hybrid.  相似文献   

7.
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g−1 when the initial uranium(VI) concentration was 100 mg L−1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.  相似文献   

8.
In this work, we report the development of novel amino-functionalized Fe3O4 hybrid microspheres adsorbent from a facial and one-step solvothermal route by using FeCl3·6H2O as a single iron source and 3-aminophenoxy-phthalonitrile as ource of amino groups. During solvothermal process, the nitrile groups of 3-aminophenoxy-phthalonitrile would bond with the Fe3O4 through the phthalocyanine cyclization reaction to form the amino-functionalized Fe3O4 magnetic nano-material, which was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermo-gravimetric analyzer (TGA). From the scanning electron microscope (SEM) and transmission electron microscopy (TEM) observation, the resulting monodispersed amino-functionalized Fe3O4 hybrid microspheres with the diameters of 180–200 nm were synthesized via the self-assembly process. More importantly, as-prepared Fe3O4 nano-materials with abundant amino groups exhibited high separation efficiency when they were used to remove the Cu(II) from aqueous solutions. Furthermore, the adsorption isotherms of Fe3O4 nano-material for Cu(II) removal fitted the Langmuir isotherm model, in which the calculated maximum adsorption capacity could increase from 5.51 to 16.25 mg g–1 at room temperature. This work demonstrated that the amino-functionalized Fe3O4 magnetic nano-materials were promising as efficient adsorbents for the removal of heavy metal ions from wastewater in low concentration.  相似文献   

9.
A novel magnetic polyethyleneimine modified reduced graphene oxide (Fe3O4@PEI-RGO) had been fabricated based on a self-assemble approach between positive charged magnetic polyethyleneimine (Fe3O4@PEI) and negative charged GO sheets via electrostatic interaction followed by chemical reduction of GO to RGO. The as-prepared Fe3O4@PEI-RGO was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), X-ray diffraction (XRD), thermal gravimetric analyzer (TGA), vibrating sample magnetometer (VSM) and zeta potential analysis, and then was successfully applied to determine four phenoxy acid herbicides and dicamba in rice coupled with high performance liquid chromatography (HPLC). As a surface modifier of RGO, PEI not only effectually affected the surface property of RGO (e.g. zeta potential), but also changed the polarity of RGO and offered anion exchange groups to polar acidic herbicides, which would directly influence the type of adsorbed analytes. Compared with Fe3O4@PEI, Fe3O4/RGO and Fe3O4@PEI-GO, the as-prepared Fe3O4@PEI-RGO, integrating the superiority of PEI and RGO, showed higher extraction efficiency for polar acidic herbicides. Besides, the adsorption mechanism was investigated as well. It turned out that electrostatic interaction and π-π interaction were considered to be two major driving force for the adsorption process. Response surface methodology (RSM), a multivariate experimental design technique, was used to optimize experimental parameters affecting the extraction efficiency in detail. Under the optimal conditions, a satisfactory performance was obtained. The calibration curves were linear over the concentration ranging from 2 to 300 ng g−1 with correlation coefficients (r) between 0.9985 and 0.9994. The limits of detection (LODs) were in the range of 0.67–2 ng g−1. The recoveries ranged from 87.41% to 102.52% with relative standard deviations (RSDs) less than 8.94%. Taken together, the proposed method was an efficient pretreatment and enrichment procedure and could be successfully applied for selective extraction and determination of polar acidic herbicides in complex matrices.  相似文献   

10.

Organic dyes are used in many industries, e.g., textile, cosmetics and food. Hence, contamination of organic dyes to water sources is a critical issue. To reduce water pollution by organic dyes, we propose a paper-like adsorbent with a practical and economical production procedure. Subsequently, a flexible adsorbent was produced using a one-step approach by vacuum filtration of graphene oxide (GO) and iron oxide nanoparticles (Fe3O4-NPs) containing dispersion through a membrane and quoted as GO/Fe3O4 paper. For comparison, GO paper was also prepared using the same procedure. Both papers were characterized using UV–VIS absorption spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, electron diffraction X-ray analysis, X-ray photoelectron spectroscopy, and powder X-ray diffraction techniques. At the steady-state conditions, GO/Fe3O4 and GO papers were performed as adsorbent for cationic dyes of methylene blue, neutral red, and anionic dyes of methyl orange and fluorescein. In general, the removal efficiency of GO/Fe3O4 paper was higher than that of GO paper for adsorption of all dyes and this adsorbent revealed satisfactory adsorption properties for cationic dyes when compared to anionic dyes.

  相似文献   

11.
An aptamer (Apt) functionalized magnetic material was prepared by covalently link Apt to Fe3O4/graphene oxide (Fe3O4/GO) composite by 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride and N‐hydroxysuccinimide, and then characterized by FTIR spectroscopy, X‐ray diffraction, and vibration sample magnetometry. The obtained composite of Fe3O4/GO/Apt was employed as magnetic solid‐phase extraction adsorbent for the selective preconcentration of sulfadimethoxine prior to analysis by high‐performance liquid chromatography. Under the optimal conditions (sample pH of 4.0, sorbent dosage of 20 mg, extraction time of 3 h, and methanol‐5% acetic acid solution as eluent), a good linear relationship was obtained between the peak area and concentration of sulfadimethoxine in the range of 5.0 to 1500.0 µg/L with correlation coefficient of 0.9997. The limit of detection (S/N = 3) was 3.3 µg/L. The developed method was successfully applied to the analysis of sulfadimethoxine in milk with recoveries in the range of 75.9‐92.3% and relative standard deviations less than 8.1%. The adsorption mechanism of Fe3O4/GO/Apt toward sulfadimethoxine was studied through the adsorption kinetics and adsorption isotherms, and the results show that the adsorption process fits well with the pseudo‐second‐order kinetic model and the adsorbate on Fe3O4/GO/Apt is multilayer and heterogeneous.  相似文献   

12.
Abstract

A hybrid system involving graphene oxide (GO), magnetic oxide (Fe3O4), acrylamide and dicyandiamide was prepared via amine functionalization of GO/Fe3O4 by means of covalent bonding with acrylamide and subsequent reaction with dicyandiamide to provide a multinitrogen containing polymer on the surface of GO. This hybrid system was utilized as a heterogeneous catalyst support for immobilizing Pd nanoparticles to provide the hybrid, Pd@GO/Fe3O4/PAA/DCA. This nano-Pd composite was characterized using Fourier transform infrared, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, X-ray diffraction, and ICP techniques and used for promoting Sonogashira cross-coupling under mild reaction conditions. This heterogeneous and magnetic catalyst was easily separated by external magnet and was reused in a model reaction, efficiently up to six times with slight loss of catalytic activity and Pd leaching, showing the suitability of GO/Fe3O4/PAA/DCA for embedding Pd nanoparticles. To check the effect of the number of surface nitrogens of the polymeric chain on the catalytic performance, the activity of the catalyst was compared with Pd@GO/Fe3O4/PAA; increased number of the surface nitrogens on the chain polymer leads to higher loading of Pd and lower the Pd leaching.  相似文献   

13.
Feng Pan  Jie Mao  Qiang Chen  Pengbo Wang 《Mikrochimica acta》2013,180(15-16):1471-1477
Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.
Figure
Functional magnetic Fe3O4@SiO2 core shell nanoparticles were utilized for solid phase extraction of Hg(II) from aqueous solutions, and the extracted Hg(II) was determined by a rhodamine-based fluorescent probe RP with satisfying results.  相似文献   

14.
This research study aims to remove hazardous anionic azo dyes (Congo red (CR)) from aqueous solutions via a simple adsorption method using a poly(3-aminobenzoic acid/graphene oxide/cobalt ferrite) nanocomposite (P3ABA/GO/CoFe2O4) as a novel and low-cost nanoadsorbent, as synthesized by a simple and straightforward polymerization method. Typically, 3-aminobenzoic acid (3ABA), as monomer, was chemically polymerized with graphene oxide (GO) and cobalt ferrite (CoFe2O4) in an aqueous acidic medium containing an ammonium persulfate initiator. The adsorbent P3ABA/GO/CoFe2O4 nanocomposite was characterized using various techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, energy-dispersive analysis by X-ray and Brunauer–Emmett–Teller, vibrating sample magnetometer, and zeta potential techniques. These techniques confirmed the interaction between the poly(3-aminobenzoic acid) with GO and CoFe2O4 due to the presence of π-π interactions, hydrogen bonding, and electrostatic forces. Herein, the removal efficiency of dye from aqueous solution by the adsorbent was studied according to several parameters such as the pH of the solution, dye concentration, dosage of adsorbent, contact time, and temperature. The adsorption of the dye was fitted using a Langmuir model (R2 between 0.9980 and 0.9995) at different temperatures, and a kinetic model that was pseudo-second order (R2 = between 0.9993 and 0.9929) at various initial concentrations of CR dye. In addition, the data revealed that the P3ABA/GO/CoFe2O4 nanocomposite exhibited a high adsorption capacity (153.92 mg/g) and removal for CR dye (98 %) at pH 5. Thermodynamic results showed the adsorption process was an endothermic and spontaneous reaction. It was found that, in terms of reusability, the P3ABA/GO/CoFe2O4 adsorbent can be used for up to six cycles. In this study, P3ABA/GO/CoFe2O4 nanocomposites were found to be low cost, and have an excellent removal capability and fast adsorption rate for CR from wastewater via a simple adsorption method. Moreover, this adsorbent nanocomposite could be simply separated from the resultant solution and recycled.  相似文献   

15.
In this work, we report the synthesis of magnetic sulfur-doped Fe3O4 nanoparticles (Fe3O4:S NPs) with a novel simple strategy, which includes low temperature multicomponent mixing and high temperature sintering. The prepared Fe3O4:S NPs exhibit a much better adsorption performance towards Pb(II) than bare Fe3O4 nanoparticles. FTIR, XPS, and XRD analyses suggested that the removal mechanisms of Pb(II) by Fe3O4:S NPs were associated with the process of precipitation (formation of PbS), hydrolysis, and surface adsorption. The kinetic studies showed that the adsorption data were described well by a pseudo second-order kinetic model, and the adsorption isotherms could be presented by Freundlich isotherm model. Moreover, the adsorption was not significantly affected by the coexisting ions, and the adsorbent could be easily separated from water by an external magnetic field after Pb(II) adsorption. Thus, Fe3O4:S NPs are supposed to be a good adsorbents for Pb(II) ions in environmental remediation.  相似文献   

16.
This study aimed to synthesize a composite material consisting of metal–organic framework based magnesium(II) and benzene-1,3,5-tricarboxylic acid (H3BTC) and its modification using graphene oxide (GO) and Fe3O4. The obtained material (i.e., [Mg3(BTC)2]/GO/Fe3O4) was studied as a matrix for the slow release of ibuprofen. [Mg3(BTC)2]/GO/Fe3O4 matrices were synthesized ex situ with the sonochemical method (material 1) and in situ with the solvothermal method (material 2). The obtained materials were completely characterized by X-ray diffraction and Fourier-transform infrared spectroscopy. Based on scanning electron microscopy imaging, the produced materials were spherical. The presence of GO and Fe3O4 in material 1 and material 2 reduced the surface area, but it increased the adsorption capacity of ibuprofen up to 94.12%. The magnetic properties of materials 1 and 2 were observed using a vibrating sample magnetometer. These results demonstrate that modification of Fe3O4 nanoparticles induces paramagnetic properties in both materials. The presence of this matrix material was able to release ibuprofen up to seven times slower at pH 5.0 and 12 times slower at pH 7.4. An increase in the pH lead to an increase in the concentration of ibuprofen released to 33.31% more than at pH 5.0.  相似文献   

17.
A magnetic hybrid material (Fe3O4‐COOH/HKUST‐1) was easily synthesized via a two‐step simple solvothermal method. Through adding sodium acrylate directly into the synthesis of Fe3O4 spheres, the surface has more carboxyl groups. It is notable that the reactions proceed without use of organic surfactants. The magnetic hybrid material was characterized using various techniques. The magnetic hybrid material has a high specific surface area (430.15 m2 g−1) and excellent magnetism (23.65 emu g−1). It is an efficient adsorbent for removing organic dyes like methylene blue (MB) from aqueous solution. It also can be easily recovered from liquid media using an external magnetic field. Adsorption experiment shows the magnetic hybrid material possesses a high adsorption capacity (118.6 mg g−1), and has high adsorption efficiency (94.3%) after five adsorption cycles with ethanol (0.2% HCl) as eluent. The sorption kinetics and isotherm analysis indicate these sorption processes are better fitted to the pseudo‐second‐order and Langmuir equations. Thermodynamic study shows the sorption processes are spontaneous and endothermic.  相似文献   

18.
A new nanoadsorbent A/Fe3O4/GO (AFG) is developed for eliminating Cs+ from water by anchoring Fe3O4 nanoparticles onto graphene oxide (GO/Fe3O4) and in situ controllable growing nanocrystal of ammonium 12-molybdophosphate (A) on the surface of GO/Fe3O4 with a simple procedure at room temperature. AFG shows a high adsorption capacity for Cs+ (Qmax?=?82.71 mg g?1) and fast kinetics (>?88.83% elimination efficiency within only 1 min and reaches the end equilibrium in about 10 min). It presents good selectivity for Cs+ in a wide pH range (2.0–10). Furthermore, it can be recovered from water with easily magnetic separation.  相似文献   

19.
A novel core-shell magnetic Prussian blue-coated Fe3O4 composites (Fe3O4@PB) were designed and synthesized by in-situ replication and controlled etching of iron oxide (Fe3O4) to eliminate Cd (II) from micro-polluted water. The core-shell structure was confirmed by TEM, and the composites were characterized by XRD and FTIR. The pore diameter distribution from BET measurement revealed the micropore-dominated structure of Fe3O4@PB. The effects of adsorbents dosage, pH, and co-existing ions were investigated. Batch results revealed that the Cd (II) adsorption was very fast initially and reached equilibrium after 4 h. A pH of 6 was favorable for Cd (II) adsorption on Fe3O4@PB. The adsorption rate reached 98.78% at an initial Cd (II) concentration of 100 μg/L. The adsorption kinetics indicated that the pseudo-first-order and Elovich models could best describe the Cd (II) adsorption onto Fe3O4@PB, indicating that the sorption of Cd (II) ions on the binding sites of Fe3O4@PB was the main rate-limiting step of adsorption. The adsorption isotherm well fitted the Freundlich model with a maximum capacity of 9.25 mg·g−1 of Cd (II). The adsorption of Cd (II) on the Fe3O4@PB was affected by co-existing ions, including Cu (II), Ni (II), and Zn (II), due to the competitive effect of the co-adsorption of Cd (II) with other co-existing ions.  相似文献   

20.
Activated carbon prepared from lemon (Citrus limon) wood (ACL) and ACL/Fe3O4 magnetic nanocomposite were effectively used to remove the cationic dye of crystal violet (CV) from aqueous solutions. The results showed that Fe3O4 nanoparticles were successfully placed in the structure of ACL and the produced nanocomposites showed superior magnetic properties. It was found that pH was the most effective parameter in the CV dye adsorption and pH of 9 gave the maximum adsorption efficiency of 93.5% and 98.3% for ACL and ACL/Fe3O4, respectively. The Dubinin–Radushkevich (D-R) and Langmuir models were selected to investigate the CV dye adsorption equilibrium behavior for ACL and ACL/Fe3O4, respectively. A maximum adsorption capacity of 23.6 and 35.3 mg/g was obtained for ACL and ACL/Fe3O4, respectively indicating superior adsorption capacity of Fe3O4 nanoparticles. The kinetic data of the adsorption process followed the pseudo-second order (PSO) kinetic model, indicating that chemical mechanisms may have an effect on the CV dye adsorption. The negative values obtained for Gibb’s free energy parameter (−20 < ΔG < 0 kJ/mol) showed that the adsorption process using both types of the adsorbents was physical. Moreover, the CV dye adsorption enthalpy (ΔH) values of −45.4 for ACL and −56.9 kJ/mol for ACL/Fe3O4 were obtained indicating that the adsorption process was exothermic. Overall, ACL and ACL/Fe3O4 magnetic nanocomposites provide a novel and effective type of adsorbents to remove CV dye from the aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号