首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
杨木泉  肖凌宇  张旋  颜悦 《应用化学》2019,36(4):431-439
作为受限高分子体系的一个经典模型,高分子刷在胶体稳定、聚合物链的自组装以及摩擦学等方面具有潜在的应用价值。 本文通过原子转移自由基聚合(ATRP)和点击化学(Click Chemistry)方法在金(Au)基底表面制备了pH响应性聚4-乙烯基吡啶-b-聚乙二醇(P4VP-b-PEG)嵌段聚合物刷。 通过频率-耗散型石英微天平(QCM-D)、X射线光电子能谱(XPS)和原子力显微镜(AFM)等技术手段分别对Au/P4VP-b-PEG聚合物刷经不同pH值溶液处理后的形态变化、表面组成和表面形貌进行了进一步深入研究。 结果表明,用不同pH值溶液处理P4VP-b-PEG嵌段聚合物刷后,该聚合物刷呈现刺激响应规律。 当pH=1.5时,P4VP链段质子化,由于静电排斥作用使P4VP-b-PEG链段呈伸展构象;当pH=11.5时,P4VP链段去质子化,并且由于失去部分结合水,P4VP-b-PEG链段呈塌缩构象。  相似文献   

2.
Poly(PEGMA) homopolymer brushes were developed by atom transfer radical polymerization (ATRP) on the initiator-modified silicon surface (Si-initiator). Through covalent binding, protein immobilization on the poly(PEGMA) films was enabled by further NHS-ester functionalization of the poly(PEGMA) chain ends. The formation of polymer brushes was confirmed by assessing the surface composition (XPS) and morphology (atomic force microscopy (AFM), scanning electronic microscopy (SEM)) of the modified silicon wafer. The binding performance of the NHS-ester functionalized surfaces with two proteins horseradish peroxidase (HRP) and chicken immunoglobulin (IgG) was monitored by direct observation. These results suggest that this method which incorporates the properties of polymer brush onto the binding surfaces may be a good strategy suitable for covalent protein immobilization.  相似文献   

3.
Patterned poly(N-isopropylacrylamide) (PNIPAAm) brushes were fabricated on oxidized silicon wafers by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide from a micropatterned initiator. The patterned surface initiator was prepared by microcontact-printing octadecyltrichlorosilane and backfilling with 3-(aminopropyl)triethoxysilane followed by amidization with 2-bromo-2-methylpropionic acid. XPS and FTIR confirmed the chemical structure of the surface initiator and the PNIPAAm brushes. Surface analysis techniques, including ellipsometry, contact angle goniometry, and X-ray reflectometry (XRR), were used to characterize the thickness, roughness, hydrophilicity, and density of the polymer brushes. Tapping-mode AFM imaging confirmed the successful patterning of the PNIPAAm brushes on the oxidized silicon substrates. Variable temperature ellipsometry indicated that the lower critical solution temperature of the hydrated PNIPAAm brush was broad, occurring over the range of 20-35 degrees C. A solvatochromic fluorophore, 6-propionyl-2-dimethylaminonaphthalene (Prodan), in the PNIPAAm brush layers yielded a very similar emission to that in DMF, which can be attributed to the similarity of their chemical structures. Fluorescence microscopy further proved the successful patterning of the polymer brushes and suggested that the Prodan is localized in the patterned PNIPAAm brushes and excluded from the surrounding octadecyltrichlorosilane regions.  相似文献   

4.
大分子单体通过两种可控聚合方法, 即开环易位聚合(ROMP)和原子转移自由基聚合(ATRP)的联用, 合成一种新型两亲性接枝聚合物刷. 具有高环张力的降冰片烯单侧链大分子单体norbornene-graft-poly(ε-caprolactone)/Br (PCL- NBE-Br)首先进行ROMP反应, 生成聚合物主链, 每个单体单元上含有一条PCL链和一个溴官能团; 然后用含溴的ROMP聚合物poly(norbornene)-graft-poly(ε-caprolactone)/Br (PCL-PNBE-Br)作为大分子引发剂引发单体2-(dimethyl- amino)ethyl methacrylate)的ATRP反应, 生成结构明确的高密度两亲性接枝聚合物刷poly(norbornene)-graft-poly(ε- caprolactone)/poly(2-(dimethylamino)ethyl methacrylate) (PCL-PNBE-PDMAEMA), 其主链每个单体单元上均含有一条疏水性PCL接枝链和一条亲水性PDMAEMA接枝链. 最后, 研究此类高密度两亲性接枝聚合物刷的自组装行为, 用动态激光光散射(DLS)研究其在混合溶剂(THF/H2O)中的胶束行为, 考察胶束溶液的浓度以及不同长度的亲水性接枝链对胶束尺寸的影响; 利用透射电镜(TEM)观察胶束为球形, 具有类似线团或草莓状的形态.  相似文献   

5.
The nitroxide-mediated polymerization of styrenic monomers containing oligo(ethylene glycol) (OEGn) moieties was chosen for the preparation of biocompatible polymer brushes tethered to silicon oxide surfaces due to the broad range of monomer structures available and the use of a nonmetallic initiator. These surfaces were characterized by near-edge X-ray absorption fine structure and water contact angle measurements. The biocompatibility of these grown polymer brushes was studied and compared with deposited assemblies of surface-bound OEGn-terminated silanes with selected chain lengths. Grown polymer brushes with short OEGn side chains suppressed protein adsorption significantly more than the deposited assemblies of short OEGn chains, and this was attributed to higher surface coverage by the brushes. Cell adhesion studies confirmed that OEGn-containing polymer brushes are particularly effective in preventing nonspecific adhesion. Studies of protein adsorption and cell localization carried out with specific ligands on surfaces patterned demonstrated the potential of these surface-tethered polymer brushes for the formation of micro- and nanoscale devices.  相似文献   

6.
Ethylenedioxythiophene (EDOT) derivatives with hydroxymethyl and oligo(oxyethylene) groups covalently attached at the ethylenedioxy bridge have been synthesized. The hydroxymethyl group considerably increases the ability of EDOT to electropolymerize in water and the electroactivity of the polymer in aqueous media. The electrochemical and optical properties of the oligo(oxyethylene)-substituted polymer reveal a negative shift of the oxidation potential and a significant enhancement of the effective conjugation length with a 0.10 eV decrease of the bandgap. The optical spectra of the polymer undoped in the presence and absence of oxygen indicate a high sensitivity of the polymer towards molecular oxygen, suggesting possible spontaneous doping by molecular oxygen.  相似文献   

7.
Isothermal crystallization rates of semicrystalline poly(methoxypoly(ethylene glycol) methacrylate) brushes on gold‐coated substrates were measured by polarized optical microscopy. Growth rates for crystal radii, which were essentially constant for each film, initially increased with film thickness and then leveled off for film thicknesses >300 nm. Avrami–Evans theory suggests that the spherulites exhibit one‐dimensional growth with heterogeneous nucleation. Compared with physisorbed analogs, polymer brushes crystallized slower due to the restriction of chain mobility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1955–1959, 2010  相似文献   

8.
Surface-enhanced Raman scattering (SERS) spectra of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and its monomer 3,4-ethylenedioxythiophene (EDOT) on Ag and Au nanoparticles presenting different morphologies and stabilizing agents have been obtained using the excitation radiation at 633 nm. The SERS spectra of the monomer and polymer are strongly dependent both on the metal and capping agent of the substrate. SERS spectra of EDOT on Au nanospheres indicates that adsorption occurs with the thiophene ring perpendicular to the metal surface. In contrast, polymerization takes place on the silver surface of Ag nanospheres. EDOT adsorption on Ag nanoprisms with polyvinylpyrrolidone (PVP) as capping agent occurs similarly to that observed on gold. Surface-enhanced resonance Raman scattering (SERRS) spectra of PEDOT on gold nanostars that present a thick layer of PVP show no chemical interaction of PEDOT with the metal surface; however, when PEDOT is adsorbed on citrate stabilized gold nanospheres, the SERRS spectra suggest that thiophene rings are perpendicular to the surface. Oxidation of PEDOT also is observed on Ag nanospheres. The investigation of the interface between PEDOT and metal surface is crucial for the development in polymer-based optoelectronic devices since this interface plays a crucial role in their stability and performance.  相似文献   

9.
We report actively controlled transport that is thermally switchable and size-selective in a nanocapillary array membrane (NCAM) prepared by grafting poly(N-isopropylacrylamide) (PNIPAAm) brushes onto the exterior surface of a Au-coated polycarbonate track-etched membrane. A smooth Au layer on the membrane surface, which is key to obtaining a uniform polymer film, was prepared by thermal evaporation of approximately 50 nm Au on both exterior surfaces. After evaporation, the inner diameter of the pore is reduced slightly, but the NCAM retains a narrow pore size distribution. PNIPPAm brushes with 10-30 nm (dry film) thickness were grafted onto the Au surface through surface-initiated atom transfer radical polymerization (ATRP) using a disulfide initiator, (BrC(CH3)2COO(CH2)11S)2. Molecular transport through the PNIPAAm polymer brush-modified NCAMs was investigated by real-time fluorescence measurements using fluorescein isothiocyanate (FITC)-labeled dextrans ranging from 4.4 to 282 kDa in membranes with variable initial pore diameters (80, 100, and 200 nm) and different PNIPAAm thicknesses. Manipulating the temperature of the NCAM through the PNIPAAm lower critical solution temperature (LCST) causes large, size-dependent changes in the transport rates. Over specific ranges of probe size, transport is completely blocked below the LCST but strongly allowed above the LCST. The combination of the highly uniform PNIPAAm brush and the monodisperse pore size distribution is critical in producing highly reproducible switching behavior. Furthermore, the reversible nature of the switching raises the possibility of using them as actively controlled filtration devices.  相似文献   

10.
A chemically grafted tris(trimethylsiloxy)silyl (tris(TMS)) monolayer on a silicon oxide substrate was used as a template for creating nanoclusters of polymer brushes. Polymer brushes were synthesized by surface-initiated polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and tert-butyl methacrylate (t-BMA) via atom transfer radical polymerization (ATRP) from alpha-bromoester groups tethered to the residual silanol groups on the silicon surface after generating a range of tris(TMS) coverage. CuBr/bpy and CuBr/PMDETA were used as the catalytic system for PMPC and Pt-BMA synthesis, respectively. The percentage of tris(TMS) coverage significantly influenced the thickness and morphology of the polymer brushes. Protrusions representing self-aggregation of PMPC brushes in nanopores as visualized by AFM analysis evidently suggested that PMPC brushes were distributed nanoscopically on the surface. The protrusion size and surface roughness corresponded quite well with the graft density of PMPC brushes. The fact that Pt-BMA brushes grown from nanopores were almost featureless implies that self-aggregation of PMPC brushes is truly a consequence of phase incompatibility between hydrophilic PMPC brushes and hydrophobic tris(TMS). The anti-fouling characteristic of PMPC brushes, inferred from plasma protein adsorption, was subsequently varied by controlling the surface coverage ratio between PMPC brushes and tris(TMS).  相似文献   

11.
Poly(acrylic acid) polyelectrolyte brushes were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP) of tert-butyl acrylate on planar gold surfaces and subsequent hydrolysis. Three types of monolayers with different numbers of thiol binding sites per initiating unit were used. The binding strength to the gold surface turned out to be of crucial importance for the formation of uniform brush layers after acidic hydrolysis. The monolayers and polymer brushes were characterized by ellipsometry, infrared spectroscopy, water contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. Their interaction with [(diglycidylamino)propyl]silsesquioxane nanoparticles at various pH values was studied by surface plasmon resonance.  相似文献   

12.
Novel cylindrical polymer brushes consisting of poly(diphenylacetylene) main chain and poly(poly(ethylene glycol) methyl ether monomethacrylate) (PPEGMA) side chains were synthesized by the diphenylacetylene macromonomer or side chain initiated atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether monomethacrylate (PEGMA) from an bromo isobutyryl-bearing poly(diphenylacetylene) (poly(BrDPA)) method. The diphenylacetylene macromonomer, namely, DPA-PPEGMA, were prepared by the ATRP of PEGMA from bromo isobutyryl-bearing diphenylacetylene. DPA-PPEGMA was polymerized successfully with WCl6-Ph4Sn catalyst to give high molecular weight polymer brushes poly(DPA-PPEGMA). Meanwhile, polymer brushes (PDPA-g-PPEGMA) were obtained by ATRP of PEGMA from poly(BrDPA). The molecular weight of the side chains of PPEGMA could be controlled simply by modulating the ATRP time. The macromonomer and polymer brushes are soluble in nonpolar solvents such as toluene and chloroform. The polymers of poly(BrDPA) and poly(DPA-PPEGMA) absorb in the longer wavelength region, with two peaks at around 370 and 414 nm. The polymers are thermally stable and exhibit double crystallization and melting peaks during the cooling and heating scans.  相似文献   

13.
Poly(oligoethylene glycol methacrylate), POEGMA, brushes were prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP) on gold‐coated silicon wafers. Prior to ATRP, the substrates were grafted by brominated aryl initiators via the electrochemical reduction of a noncommercial parent diazonium salt of the formula BF4?, +N2‐C6H4‐CH(CH3)Br. The diazonium‐modified gold plates (Au‐Br) served as macroinitiators for ATRP of OEGMA which resulted in hydrophilic surfaces (Au‐POEGMA) that could be used for two distinct objectives: (i) resistance to fouling by Salmonella Typhimurium; (ii) specific recognition of the same bacteria provided that the POEGMA grafts are activated by anti‐Salmonella. The Au‐POEGMA plates were characterized by XPS, polarization modulation‐infrared reflection‐absorption spectroscopy (PM‐IRRAS) and contact angle measurements. Both Beer‐Lambert equation and Tougaard's QUASES software indicated a POEGMA thickness that exceeds the critical ~10 nm value necessary for obtaining a hydrophilic polymer with effective resistance to cell adhesion. The Au‐POEGMA slides were further activated by trichlorotriazine (TCT) in order to covalently bind anti‐Salmonella antibodies (AS). The antibody‐modified Au‐POEGMA specimens were found to specifically attach Salmonella Typhimurium bacteria. This work is another example of the diazonium salt/ATRP process to provide biomedical polymer surfaces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
We report on a new route for the facile preparation of pH-responsive tethered brushes on metallic surfaces, starting from poly(acrylic acid) (PAA) containing a disulfide (S-S) bond (PAA-S-S-PAA). First, atom transfer radical polymerization (ATRP) of 1-ethoxyethyl acrylate (EEA) with a disulfide-containing initiator was performed to obtain the poly(EEA) precursor polymer (PEEA-S-S-PEEA). Deprotection of PEEA by a heating step resulted in the desired PAA chains without any further purification. The brushes, obtained by the ‘grafting to’ of PAA-S-S-PAA onto gold, were then characterized by atomic force microscopy in water at various pH values. The results evidence a large collapsing/swelling capacity.  相似文献   

15.
Well-controlled polymerization of N-vinylpyrrolidone (NVP) on Au surfaces by surface-initiated atom transfer radical polymerization (SI-ATRP) was carried out at room temperature by a silanization method. Initial attempts to graft poly(N-vinylpyrrolidone) (PVP) layers from initiators attached to alkanethiol monolayers yielded PVP films with thicknesses less than 5 nm. The combined factors of the difficulty in the controllable polymerization of NVP and the instability of alkanethiol monolayers led to the difficulty in the controlled polymerization of NVP on Au surfaces. Therefore, the silanization method was employed to form an adhesion layer for initiator attachment. This method allowed well-defined ATRP polymerization to occur on Au surfaces. Water contact angle, X-ray photoelectron spectroscopy (XPS), and reflectance Fourier transform infrared (reflectance FTIR) spectroscopy were used to characterize the modified surfaces. The PVP-modified gold surface remained stable at 130 °C for 3 h, showing excellent thermal stability. Thus, postfunctionalization of polymer brushes at elevated temperatures is made possible. The silanization method was also applied to modify SPR chips and showed potential applications in biosensors and biochips.  相似文献   

16.
We report the preparation and characterization of poly(N-isopropylacrylamide) (PNIPAAm) polymer brushes exhibiting controlled lateral variations in the patchiness of polymer chains. These gradients were achieved through an atom transfer radical polymerization (ATRP) grafting-from approach utilizing surfaces on which the spatial profile of the initiator density was carefully controlled. Initiator density gradients were formed on Au by first preparing a hexadecanethiol (HDT) density gradient, by reductive desorption using a laterally anisotropic electrochemical gradient. The bare areas in the original HDT gradient were then back-filled with a disulfide initiator, (BrC(CH3)2COO(CH2)11S)2. The initiator coverage was characterized by X-ray photoelectron spectroscopy (XPS). Then, surface-initiated ATRP was utilized to transfer the initiator density gradient into gradients of PNIPAAm chain density. Ellipsometry, surface plasmon resonance (SPR), and atomic force microscopy (AFM) were used to characterize these PNIPAAm density gradients. The defining characteristic of the PNIPAAm gradients is the evolution of the morphology from discontinuous mushroom structures at extremely low grafting densities to heterogeneous patchy structures at intermediate grafting densities. The size of the patchy domains gradually increases, until at a high grafting density region, the morphology evolves to a smoother, presumably more extended, structure.  相似文献   

17.
The adsorption-desorption of silica nanoparticles(NPs) on poly(ethylene glycol)(PEG) grafted onto gold(Au) substrate was studied by quartz crystal microbalance with dissipation monitoring(QCM-D) technique. The results of frequency and dissipation show that SiO2 NPs can be adsorbed strongly on PEG-SH brushes at pH of 9.6, and a new dense and rigid construction is formed. Adjusting the pH from 9.6 to 12.3 resulted in the desorption of silica NPs from the PEG brushes because of a significant weakening of the hydrogen bond between the silica NPs and PEG chains. In addition, the viscoelastic properties of the system during the adsorption-desorption process were also analyzed via the relationship between the normalized frequency(Δf/n) and mass. And the corresponding atomic force microscopy(AFM) images also exhibit morphological changes during the above process, consistent with the changes in viscoelasticity.  相似文献   

18.
Chemical patterns consisting of poly(2-vinyl pyridine) (P2VP) brushes in a background of a cross-linked polystyrene (PS) mat enabled the highly selective placement of citrate-stabilized Au nanoparticles (NPs) in arrays on surfaces. The cross-linked PS mat prevented the nonspecific binding of Au NPs, and the regions functionalized with P2VP brushes allowed the immobilization of the particles. Isolated chemical patterns of feature sizes from hundreds to tens of nanometers were prepared by standard lithographic techniques. The number of 13 nm Au NPs bound per feature increased linearly with increasing area of the patterns. This behavior is similar to previous reports using 40 nm particles or larger. Arrays of single NPs were obtained by reducing the dimensions of patterned P2VP brushes to below ~20 nm. To generate dense (center-to-center distance = 80 nm) linear chemical patterns for the placement of rows of single NPs, a block-copolymer (BCP)-assisted lithographic process was used. BCPs healed defects associated with the standard lithographic patterning of small dimensions at high densities and led to highly registered, linear, single NP arrays.  相似文献   

19.
Journal of Solid State Electrochemistry - A novel electrochromic polymer poly(2,3-dimethyl-2,3-dihydrothieno[3,4-b][1,4]dioxine) (PEDOT-Me2) based on 3,4-ethylenedioxythiophene (EDOT) with...  相似文献   

20.
Polymer brushes were prepared by using the reversible addition fragmentation chain transfer (RAFT) technique. The silicon substrates (Si (111) surface) were modified with ethyl xanthate groups which were introduced by the treatment of Si (111) surface with sodium ethyl xanthate. The polymer brushes were then prepared under RAFT conditions from the Si (111) wafer. Its “living” characteristics were determined by a series of characterizations including gel permeation chromatography (GPC), ellipsometry, and contact angle measurements. The results showed a well‐defined graft layer consisting of polymer brushes with low‐polydispersity could be prepared directly on Si (111)‐X surface (where X represents an ethyl xanthate groups). The structure of the polymer brushes was characterized and confirmed with the surface sensitive techniques such as X‐ray photoelectron spectroscopy (XPS) and scanning probe microscopy (SPM). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号