首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A kind of nanocomposite with good dispersion in water was prepared through noncovalent adsorption of iron picket-fence porphyrin (FeTMAPP), iron-5,10,15,20-tetrakis[αααα-2-trismethylammoniomethyl-phenyl]porphyrin, on multiwalled carbon nanotubes (MWNTs). UV–visible spectroscopic and electrochemical methods were used to characterize the nanocomposite. A gold nanoparticles/nanocomposite self-assembled monolayer was formed on gold electrode and showed highly synergetic behavior towards the electrocatalytic reduction of O2 with a decrease of overpotential of 200 mV. FeTMAPP acted as the catalytic active center, and MWNTs increased the amount of FeTMAPP adsorbed and accelerated the electron transfer between FeTMAPP and electrode. The resulting biosensor exhibited good response to oxygen with a linear range from 0.52 to 180 μM and a detection limit of 0.38 μM, without the interference of ascorbic acid and uric acid, which showed an application potential of the proposed nanocomposite and monolayer in detection of dissolved oxygen and oxidase substrates.  相似文献   

2.
Nanocomposite membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) and silica were synthesized by sol–gel copolymerization of tetraethoxysilane (TEOS) with different organoalkoxysilanes in tetrahydrofuran solutions of PTMSP. The influence of the synthesis parameters (type and concentration of organoalkoxysilanes, temperature and time) on the silica conversion and the gas permeation performance of PTMSP–silica nanocomposite membranes was investigated and discussed in this paper. The nanocomposite membranes were characterized by single and mixed gas permeation, thermogravimetric analysis and scanning electron microscopy. The butane permeability and the butane/methane selectivity increased simultaneously when high silica conversion was obtained and the size of particle was in the range 20–40 nm. For the sake of comparison, nanocomposite membranes based on PTMSP were also prepared by dispersing silica particles with different functional groups into the PTMSP casting solution. The addition of fillers to the polymer matrix can be performed up to a higher content of silica (30% silica-filled PTMSP in contrast to 6 wt.% for the in situ-generated silica). In this case, the simultaneous increase in butane permeability and butane/methane selectivity was significantly higher when compared to the nanocomposite membranes prepared by sol–gel process. The addition of fillers with 50% of surface modification with hydrophobic groups (Si–C8H17 and Si–C16H33) seems not to lead to a significant increase of the butane/methane selectivity and butane permeability when compared to the silica with hydrophilic surface groups, probably because of the unfavorable polymer/filler interaction, leading to an agglomeration of the long n-alkyl groups at the surface of the polymer. An increase of butane permeability up to six-fold of unfilled polymer was obtained.  相似文献   

3.
Electrocatalytic oxidation of nicotine at multiwalled carbon nanotube (MWCNT)–alumina-coated silica (ACS) nanocomposite modified glassy carbon electrode are described. The sensing performance of the MWCNT–ACS nanocomposite modified glassy carbon electrode for the electrooxidation of nicotine was investigated using cyclic voltammetry and amperometry in 0.1 M phosphate buffer solution (pH 8). The MWCNT–ACS nanocomposite modified glassy carbon electrode exhibited the abilities to decrease the electrooxidation potential, to prevent the electrode surface fouling, and to raise the current responses. The MWCNT–ACS nanocomposite responded rapidly to nicotine with a sensitivity of 1.786 A M?1 cm?2 and a detection limit of 1.42 μM (according to 3σ criterion). A signal almost 180 times more sensitive was obtained at MWCNT–ACS nanocomposite modified glassy carbon electrodes as compared to bare glassy carbon electrode. The nicotine oxidation potential obtained in this study is much lower than that at boron-doped diamond electrodes.  相似文献   

4.
Microwave-absorptive polymeric composite materials are becoming important to protect interference of any communication systems due to the increase in the use of microwave-inducing devices. In this work, the microwave-absorptive polyurethane composites are prepared using natural zeolites of Sarulla North Sumatra and commercial ferric-oxide as fillers. Weight ratio of the natural zeolite to ferric oxide were varied (18:2; 16:4; 14:6; 12:8 and 10:10) by weight. The fillers are prepared using ball milling technique and characterized using Particle Size Analyzer for particle size distribution. The nanocomposites, prepared using in-situ reaction of polyethylene glycol and toluene diisocyanate, is characterized for physical and mechanical properties using tensile strength, thermal properties with TGA techniques, as well as morphological and chemical properties using scanning electron microscopy. Composition and loading of the nanofillers against polyurethane matrices is 20% by weight. Microwave-absorption properties of the nanocomposites is characterized using 8-12 GHz frequency. Tensile strengths of the natural zeolite-ferric oxides polyurethane nanocomposites shows higher values when matrices filled with lower ferric-oxide, which could be due to the nanozeolites have functioned as reinforcement for the polyurethane matrix through polar-polar interaction between the filler surfaces with the matrices. The microwave absorption properties, which investigated by Vector Network Analyzer, of the nanocomposites filled in polyurethane with the ratio of nanozeolite to ferric oxide filler of 12:8 shows reflection loss of – 13.2 dB. This condition was observed at 11.1 GHz.  相似文献   

5.
In biodegradable polymer nanocomposite, the important factors to determine its properties are polymer, biodegradable materials and nano filler. In case of nano filler of organo layer silicate (OLS) the interlayer gallery also plays an important role. This research is intended to study the effect of surfactants to the interlayer of OLS by sonication. Glycerol monostearate (GMS) and gum rosin (GR) were used to increase the OLS gallery or intercalation and the temperature stability as it provides an advantage for OLS to ease the exfoliation process. The relationship between OLS and surfactant was examined by X-ray diffraction (XRD) to observe the dispersion of silicate and Fourier transform infrared (FTIR) to identify the effect of surfactants. Thermal gravimetric analysis (TGA) was carried out to prove that the previous surfactant is already substituted. It was found that pretreatment of OLS with sonication using GMS and GR improved the interlayer gallery, and the improvement is getting higher with the increasing of concentration. TGA analysis provides that the thermal stability of pretreatment OLS decomposed at 331 °C for GMS and 270 °C for GR where is higher than the initial OLS at 269 °C.  相似文献   

6.
The nitroxide mediated controlled surface initiated polymerization of methyl methacrylate (MMA)/butyl acrylate (n-BA) was carried out with a macroinitiator modified montmorillonite. The macroinitiator was synthesized by the nitroxide mediated polymerization of vinylbenzyl trimethylammonium chloride (VBTMACl), methylmethacrylate (MMA) and styrene (S) at 90 °C using BlocBuilder®. The macroinitiator was exchanged with the sodium cations of the montmorillonite, to yield surface modified reactive montmorillonite. The bulk polymerizations of BA/MMA from the clay surface produced controlled molecular weight polymers that were able to exfoliate the clay. This controlled polymer/clay nanocomposite was used as masterbatch and further dispersed in monomers and miniemulsified to perform miniemulsion polymerization of BA/MMA (90/10 wt.%) at 30 wt.% solids content at low emulsifier concentration. The adhesive properties of the nanocomposites prepared with the masterbatch were proved to be better than those prepared with an organically modified clay.  相似文献   

7.
In this paper, the morphological structure and properties such as, miscibility, tensile strength, flux and retention ratio of hollow-fiber membranes manufactured by PAN mixing with small amounts of PVDF have been studied. The hollow fiber was made from a spinning solution composed of polymer (PAN : PVDF=10 : 0, 9 : 1, 7 : 3), additive (PVP, PEG-600) and solvent (DMAC) when immersed in water. The spinnability of blend polymer and the influences of blending on spinning technology have been observed; the morphology of membranes were examined by SEM. The blend membranes possess much higher flux than PAN membrane and fairly good retention ratio especially for the membrane made by PAN : PVDF=9 : 1.  相似文献   

8.
Novel core–shell SDC (Ce0.8Sm0.2O1.9)/amorphous Na2CO3 nanocomposite was prepared for the first time. The core–shell nanocomposite particles are smaller than 100 nm with amorphous Na2CO3 shell of 4–6 nm in thickness. The nanocomposite electrolyte shows superionic conductivity above 300 °C, where the conductivity reaches over 0.1 S cm−1. Such high conductive nanocomposite has been applied in low-temperature solid oxide fuel cells (LTSOFCs) with an excellent performance of 0.8 W cm−2 at 550 °C. A new potential approach of designing and developing superionic conductors for LTSOFCs was presented to develop interface as ‘superionic highway’ in two-phase materials based on coated SDC.  相似文献   

9.
《Solid State Sciences》2012,14(2):250-257
CO2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO2 adsorption performance showed that the CO2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO2 adsorption capacity increased from 0.42 mmol g−1 of pure silica SBA-15 to 1.35 mmol g−1 of Mg–Al–SBA-15-I1 by the ion-exchange method enhanced with Al3+ synergism. Moreover, it also increased from 0.67 mmol g−1 of pure silica MCM-41 to 1.32 mmol g−1 of Mg–EDA–MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO2 adsorption/desorption cycles showed Mg–urea–MCM-41-D10 possessed quite good recyclability.  相似文献   

10.
Nanocomposite of Silica-zirconia-molybdate designated as Si-Zr-Mo was prepared via the reaction of the in situ generated zirconium-tetra octanoxide [Zr(Oct)4] through condensation of zirconium-tetra-n-butoxide and 1-octanol in a sol–gel method with sulfuric acid and tetraethylorthosilicate (TEOS) followed by grafting of MoO42? on modified silico zirconia nanocomposite under reflux conditions. The prepared nanocomposite was characterized using inductively coupled plasma (ICP), N2 sorption isotherms, transmission electron microscopy (TEM), and FT-IR spectroscopy. The as prepared nanocomposite had a surface area and pore dimension of 140 m2/g and 1.48 nm, respectively. The morphology of sulphated silico zirconia nanocomposite after immobilization MoO42? has been changed from nanoparticles to nanaorods. It was found that the synthesized nanocomposite successfully catalyze the oxidative dehydrogenation of 1,4-dihydropyridines (1,4-DHPs) with 92–100% conversion and 80–100% selectivity toward the desired products.  相似文献   

11.
In order to prevent the vanadium crossover and preferential water transfer in all-vanadium redox flow battery (VRFB), three methods – electrolyte soaking, oxidation polymerisation and Electrodeposition, were used to modify Nafion 117 membranes using pyrrole. The surface of the modified membranes was uniform and even, and the membranes were characterised in terms of morphology, membrane area resistance, vanadium permeability and water transfer property. The properties of all the modified membranes were improved greatly. The membranes modified by Electrodeposition showed a best combination of the membrane resistance, vanadium permeability and water transfer property, the experimental results showed that the V(IV) ion permeability of polypyrrole modified Nafion membranes by Electrodeposition at the conditions of 0.025 mA cm−2 and 0 °C for 60 min reduced more than 5 times from 2.87 × 10−6 cm2 min−1 to 5.0 × 10−7cm2 min−1, and the water transfer property decreased more than 3 times from 0.72 ml/72 h cm2 to 0.22 ml/72 h cm2. All above properties made the modified Nafion membranes more applicative in the VRFB system. This paper also reported other methods for Nafion membrane modification and the influences of the deposition conditions on the properties of the membrane selectivity and water transfer.  相似文献   

12.
LiCoO2 as one of cathodes in lithium ion battery was prepared using ball mill on 800 Hz for 10 h, followed by ultra–sonic process in order to form LiCoO2 nanoparticle. Poly(vinyledene fluoride) PVDF was added into LiCoO2 nanoparticle using dimethylsulfoxide (DMSO) to form LiCoO2/PVDF composite. The addition of PVDF was able to fill the voids on LiCoO2 matrix, therefore the space gap between particles in the matrix could be eliminated. The morphology, crystal structure and composite conductivity of LiCoO2/PVDF were analysed using scanning electron microscope (SEM), X-ray diffraction (XRD) and conductivity meter. The results showed that LiCoO2 with PVDF had bigger conductivity value than LiCoO2 without PVDF.  相似文献   

13.
In this paper, coal tar pitch (CTP) was modified with cinnamaldehyde (CMA) in the presence of p-toluene sulfonic acid. The parent CTP and CMA modified CTP were characterized by 1H nuclear magnetic resonance spectroscopy, elemental analysis and scanning electron microscopy. Carbonization behaviors of CMA modified CTPs were studied by thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction techniques. The results show that the carbonization behaviors of parent CTP and CMA modified CTPs are much different. The modification of CTP with CMA results in an increase in carbonization yield by 3.46–5.08% when 100 g CTP was modified with 5–15 ml of CMA. During the carbonization process, methyl and methylene groups of the CMA modified CTP gradually disappear while increasing temperature and its chemical structures change greatly when the temperature is higher than 400 °C. In addition, the modification with CMA is beneficial for increasing graphitizability of CTP.  相似文献   

14.
Polyaniline(PANI)/Tin oxide (SnO2) hybrid nanocomposite with a diameter 20–30 nm was prepared by co-precipitation process of SnO2 through in situ chemical polymerization of aniline using ammonium persulphate as an oxidizing agent. The resulting nanocomposite material was characterized by different techniques, such as X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infrared spectroscopy (FT-IR) and Ultraviolet–Visible spectroscopy (UV–Vis), which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the nanocomposite materials and the distribution of the metal particles in the nanocomposite material. SEM observation showed that the prepared SnO2 nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer nanocomposite material. UV–Vis absorption spectra of PANI/SnO2 nanocomposites were studied to explore the optical behavior after doping of nanoparticles into PANI matrix. The incorporation of SnO2 nanoparticles gives rise to the red shift of π–π1 transition of polyaniline. Thermal stability of PANI and PANI/SnO2 nanocomposite was investigated by thermogravimetric analysis (TGA). PANI/SnO2 nanocomposite observed maximum conductivity (6.4 × 10?3 scm?1) was found 9 wt% loading of PANI in SnO2.  相似文献   

15.
Commercially, the alteration of a rubber formulation is usually made in such a way as to keep the hardness of the rubber product constant. This is because a specific hardness of the rubber product sets the limit to its practical applications. Therefore, in this paper, natural rubber (NR) vulcanizates containing various fillers were prepared to have the same hardness level, and their mechanical properties were compared and related to the degree of filler dispersion. The results show that higher amounts of carbon black (CB) and silica are needed for CB- and silica-filled natural rubber vulcanizates to achieve the same hardness value as a NR vulcanizate containing 6 phr of montmorillonite clay. At equal loading of fillers, clay-filled vulcanizate exhibits higher modulus, hardness, tensile strength and compression set, but lower heat build-up resistance and crack growth resistance than those of the vulcanizates containing conventional fillers. For the vulcanizate having the same hardness value, CB-filled vulcanizate gives the better overall mechanical properties followed by the clay-filled and silica-filled vulcanizates, respectively. The explanation is given as the better dispersion of carbon black, as can be seen in the SEM micrograph.  相似文献   

16.
For high performance waterborne coatings usually polymer latexes with low emulsifier content are more preferred. Although polymer/clay nanocomposites offer improved properties, it is difficult to produce clay based nanocomposite latexes containing low emulsifier due to the stabilization problems especially caused by organoclays. Present study deals with the preparation of a tBA/BA/MAA ternary copolymer/clay nanocomposite containing 3 wt.% sodium montmorillonite (Na+-MMT) via seeded emulsion polymerization. Experimentally it was observed that even the usage of hydrophilic clay caused stabilization problem and a certain amount of emulsifier (>1 wt.%) was necessary to obtain stable latexes. In addition, the usage of a low molecular weight water soluble polymer as steric barrier was found to increase the stability of system. Obtained nanocomposite latex showed fine particle size diameter (127 nm) and very narrow size distribution (PDI = 0.06). The WAXD and TEM investigations indicated that a mostly exfoliated nanocomposite was obtained. Thermal analyses (DSC, DMTA and TGA) showed that there was no change at Tg of the copolymer while very high improvement was obtained for elastic modulus and a slight increase in thermal stability. According to the rheological measurements, the nanocomposite latex showed a higher low shear viscosity, a stronger shear thinning behavior and an improved physical stability in comparison to the reference latex.  相似文献   

17.
A novel functionalized multi walled carbon nanotube (MWCNT) was prepared through grafting with α-azido-poly(ethylene-co-butylene) (PEB-N3). The PEB-N3 was prepared through a two step procedure and grafted onto an industrial grade multi walled carbon nanotube (MWCNT) through a highly efficient nitrene addition. This novel nano filler was melt mixed into polypropylene (PP) and the composite was characterized by FT-IR spectroscopy, Raman spectroscopy, Scanning Electron Microscopy (SEM), Rheology and Dielectric Relaxation Spectroscopy (DRS). The analyses showed that composites with the novel filler had a high degree of discharge from the surface and higher conductivity compared to the pristine filler, illustrating an efficient conductive network in the composites. The composites showed low percolation thresholds of 0.3 wt.% (0.15 vol.%) as well as improved stability at a range of temperatures from 25–135 °C.  相似文献   

18.
Net-structured NiO was prepared by urea-mediated homogeneous hydrolysis of Ni(CH3COO)2 under microwave radiation followed by a calcination at 500 °C. NiO–C nanocomposite was prepared by dispersing the as-prepared net-structured NiO in glucose solution and subsequent carbonization under hydrothermal conditions at 180 °C. The carbon in the composite was amorphous by the X-ray diffraction (XRD) analysis, and its content was 15.05 wt% calculated according to the energy dispersive X-ray spectroscopy (EDX) result. Transmission electron microscopy (TEM) image of the NiO–C nanocomposite showed that the NiO network was homogeneously filled by amorphous carbon. The reversible capacity of NiO–C nanocomposite after 40 cycles is 429 mAh g−1, much higher than that of NiO (178 mAh g−1). These improvements are attributed to the carbon, which can enhance the conductivity of NiO, suppress the aggregation of active particles, and increase their structure stability during cycling.  相似文献   

19.
Radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses of 1 and 2.5 kGy in the presence of a styrene/N,N-dimethylformamide (DMF) solution (1:1, v/v) and at doses of 20, 40 and 80 kGy in presence of a styrene/toluene solution (1:1, v/v) at dose rate of 5 kGy h?1 was carried out by the simultaneous method under nitrogen atmosphere and room temperature, using gamma rays from a Co-60. The films were characterized before and after modification by calculated grafting yield (GY %), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose, and the grafting of styrene was confirm by FT-IR due to the new characteristic peaks and by the TG and DSC attributed to changes in thermal behavior of the grafted material. Results showed that the system allows the controlled grafting of styrene into PVDF using gamma rays at doses as low as 1 kGy in DMF.  相似文献   

20.
CuO/MWCNT nanocomposite is prepared by a simple precipitation method. The MWCNTs are incorporated into the leaf-like CuO nanoplates and build up a network to connect the CuO nanoleaves. The as-prepared CuO/MWCNT exhibits superior reversible Li-ion storage, the capacity maintains 627 mAh g? 1 at 60 mA g? 1 even after 50 cycles. The improved capability is ascribed to the MWCNT network in the composite, which improves the electrical contact of CuO/CuO and CuO/current collector, facilitates the charge transfer on CuO/electrolyte interfaces, and compensates the volume change of CuO during cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号