首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heteropolyanions with different structures, including Keggin, Dawson, Preyssler, mixed addenda, and sandwich types, catalyzed the formation of 1,3‐diphenyl‐isoxazole from the condensation of 1,3‐diphenyl‐propane‐1,3‐dione and hydroxylamine hydrochloride in different solvents and under heating conditions. Our data vividly indicate that H3PW11CuO40 is the catalyst of choice and could catalyze the synthesis of other isoxazole derivatives in high yields and good selectivities.  相似文献   

2.
Thenitronesareveryimportantinorganicsynthesis.TheyhavebeenwidelyutilizedasintermediatesfromwhichcomPlexheterocyclicornaturalcompoundsanddrugs"'weresynthesisedsuchasisoxazoline3andoxazine4.However,theconversionofnitronetoisoxazolebythermaldecompositionhasnotbeenreported.Inthispaper,wedevelopanewsyntheticmethodofisoxazolesfromheterocyclicnitronesasfollows:wi.-"'rtXfa.H;b.3,4-O-CH2-o-;c.4-CH3O,d.4-Cl;e.2-Brf.2-Cl,g.3,4-coCH3;h.3-ro2;i.4-so2;j.4-CH3Experiment8lAdriedroundbottomflaskundernit…  相似文献   

3.
A robust and general protocol for a sustainable copper‐free Sonogashira cross coupling under micellar aqueous reaction conditions with high turnover was developed. By using the commercially available catalyst CataCXium A Pd G3 and THF as co‐solvent, various alkyne substrates were efficiently cross‐coupled with a broad range of aryl halides, providing improved yields and low catalyst loadings. The reaction parameters were optimized to render the process operationally simple, robust and scalable. The method gives access to alkynylated arenes, heterocyclic compounds, and monofunctionalized products from dihalogenated substrates with an improved selectivity achieved by the micellar aqueous reaction conditions.  相似文献   

4.
For the first time, condensations of amines with carbonyl compounds have been performed in supercritical carbon dioxide (sc-CO2). The reactions with aldehydes or active ketones proceed at moderate temperatures (35–55 °C) without use of external catalysts. The process is autocatalytic: it is accelerated by the carbonic acid generated in situ by interaction between the released water and the CO2 medium. The imine products were obtained in high yields in a crystalline form and did not require further purification. The one-pot transfer hydrogenation and [4+2] cycloaddition reactions performed in the CO2 medium have uncovered attractive prospects for facile green synthesis of more complex and valuable compounds from the generated in situ imine products.  相似文献   

5.
新型含异噁唑环醚菊酯的合成及生物活性研究   总被引:1,自引:0,他引:1  
4异丙基 3 取代苯基 5 羟基异唑和 3 苯氧基苄基溴为原料 ,三乙胺为缚酸剂 ,设计并合成了 1 4个未见报道的 4 异丙基 3 取代苯基 5 异唑基 (3′ 苯氧基 )苄基醚。通过红外光谱、核磁共振、元素分析等手段 ,确证了它们的化学结构。初步的试验表明 ,其中 9个异唑醚菊酯化合物具有较强的生物活性 ,为新型拟除虫菊酯的创制提供了参考依据。Fourteennewpyrethroidscontainingisoxazoleweredesignedandsynthesizedfrom 4 isopropy1 3 subs…  相似文献   

6.
The synthesis of 2-substituted indoles starting from the corresponding unprotected 2-alkynylanilines was made possible in 3% TPGS-750-M water using Pd(OAc)2 alone as the catalyst. The reaction was sensitive to the heating mode respect to the nature of the starting material as, in many cases, convectional heating was better than microwave dielectric heating. The MW (microwave) delivery mode had also an influence in the formation of by-products and, consequently, product yields. A tandem Sonogashira-cyclisation reaction was also accomplished using Pd(OAc)2/Xphos in the nanomicellar water environment.  相似文献   

7.
The reaction of 5‐amino‐3‐methylisoxazole ( 1 ) with formalin and secondary amines gave the corresponding Mannich bases 3 , 4 , 5 , 6 . Alkylation of isoxazole derivative 1 with Mannich bases hydrochloride gave unsubstituted isoxazolo[5,4‐b ]pyridine derivatives 8a , 8b via alkylation at position 4. Moreover, coupling reaction of 1 with different diazonium salts gave the corresponding mono and bisazo dyes of isoxazole derivative. The newly synthesized compounds were screened for their antitumor activity compared with 5‐fluorouracil as a well‐known cytotoxic agent using Ehrlich ascites carcinoma cells. Interestingly, the obtained results showed clearly that compounds 3 , 15 , 8b , 4 , 8a , and 5 exhibited high antitumor activity than 5‐fluorouracil.  相似文献   

8.
新型异噁唑啉类化合物的合成及其抗肿瘤活性   总被引:1,自引:0,他引:1  
刘冰妮  刘默  刘登科  刘巍  祁浩飞 《合成化学》2011,19(6):734-736,761
以3,4-二氟苯甲醛为起始物,经4步反应合成了关键中间体N-[{3-[3-氟-4-(1-哌嗪基)苯基]4,5-二氢-5-异噁唑}甲基]乙酰胺(4);4与取代苯磺酰氯经亲核取代反应合成了6个新型的异噁唑啉类化合物(6a~6f),其结构经1H NMR和MS表征.采用MTT法对6a~6f进行初步生物活性测试结果表明,部分化合...  相似文献   

9.
We report a facile, cost effective, and environmentally friendly green chemistry method for preparing silver nanoparticles (AgNPs) using Rubus crataegifolius bge (RCB) fruit extract. The amount of the fruit extract used was found to be important parameters in the growth of AgNPs. In this study, the effect of RCB fruit extract on the synthesis of AgNPs was studied using UV–Vis spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), and dynamic light scattering analyses were performed to characterize the RCB fruit extract-stabilized AgNPs. The formation of the AgNPs was confirmed by the color change of the reaction medium and the absorbance peak observed at 420 nm. The XRD analysis confirmed the face centered cubic structure of the AgNPs. The catalytic property of the as-synthesized AgNPs was analyzed for the reduction of 4-nitrophenol to 4-aminophenol.  相似文献   

10.
Environmental methodologies are gaining recognition in this modern world. Environmental nanotechnology plays a major role in improving modern fields of environmental engineering and science. Metal oxide nanoparticles have exceptional properties due to their small size, including quantum confinement, surface-to-volume ratio, plasmon excitation, high biocompatibility, and surface modifiability. The biosynthesis of nanoparticles using fungi, bacteria, and plants through various biotechnological techniques is currently a new paradigm for environmental protection. Synthesis of nanoparticles through plant extract is good because it eliminates the dangers of toxic chemicals, it is environmentally friendly, simpler, and safer as the reaction time is reduced and it can also be increased in size for higher operation. The present study is based on the development of zinc oxide nanoparticles from papaya leaf extract where zinc nitrate is used as a precursor. The biosynthesized nanoparticles are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, electron microscopy, energy-dispersive X-ray analysis, UV-visible spectroscopy, and dynamic light scattering analysis. The crystalline phase determination of the zinc oxide nanoparticles is analyzed by X-ray diffraction and the formation of polycrystalline zinc oxide nanoparticles is confirmed. FT-IR spectrum reveals the main functional groups and chemical information in zinc oxide nanostructures. Morphological analysis is performed using SEM at different magnification levels. EDAX analysis shows the purity of the composite samples. Optical characterization is performed using a UV–vis spectrophotometer. DLS analysis shows that the nanoparticles formed have a relatively well-defined dimension.  相似文献   

11.
The application of cysteine-capped silver nanoparticles synthesized using green tea as the reducing agent to immobilize lipase has been reported in the present work. The reducing property of green tea is due to the presence of polyphenolic compounds in its extract which are not oxidized at ambient atmospheric conditions and hence is a suitable reducing agent for green synthesis of nanoparticles. Cysteine-capped silver nanoparticles were synthesized under alkaline conditions by reducing the silver salt by green tea extract in the presence of cystine. Various parameters such as the cystine concentration, pH, temperature, and amount of reducing agent were standardized and their effect on the synthesis process has been initially evaluated by surface plasmon resonance peak analysis. Furthermore, the synthesized nanoparticles were also characterized using X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The particle size analysis revealed the average size of the particles to be around 20?nm. The glutaraldehyde-deactivated amino group on cysteine-capped nanoparticles was used to immobilize lipase on its surface. Both crude and immobilized lipases were checked for activity and protein content under standard assay conditions and their activity was found to be 37.7 and 24.9?U?mL?1, respectively. The lipase nanoparticle bioconjugates exhibited a good shelf life of 60 days with a marginal decrease in activity. The bioconjugates showed 15% loss in its initial activity at the end of five reusability cycles. This immobilized reusable system has the potential to be utilized for various applications pertaining to the exploitation of lipase in various industries.  相似文献   

12.
Carotenoids are characterized by a wide range of health-promoting properties. For example, they support the immune system and wound healing process and protect against UV radiation’s harmful effects. Therefore, they are used in the food industry and cosmetics, animal feed, and pharmaceuticals. The main sources of carotenoids are the edible and non-edible parts of fruit and vegetables. Therefore, the extraction of bioactive substances from the by-products of vegetable and fruit processing can greatly reduce food waste. This article describes the latest methods for the extraction of carotenoids from fruit and vegetable byproducts, such as solvent-free extraction—which avoids the costs and risks associated with the use of petrochemical solvents, reduces the impact on the external environment, and additionally increases the purity of the extract—or green extraction using ultrasound and microwaves, which enables a significant improvement in process efficiency and reduction in extraction time. Another method is supercritical extraction with CO2, an ideal supercritical fluid that is non-toxic, inexpensive, readily available, and easily removable from the product, with a high penetration capacity.  相似文献   

13.
Plant-based nanoparticles (NPs) have found great interest among various scientist in the present era and used in various sector including medicine, agriculture, and food industry. The various chemical constituents of plants aid in the bioreduction of metal ions to a nanoscale. Among the various NPs synthesized, zinc oxide (ZnO) NPs hold a premier position. ZnO NPs have use in textile, cosmetic, diagnostics, optoelectronics, photocatalysis, diodes, and many other areas. NPs synthesized through green synthesis have a potentially greater role in treating clinical pathogens. Present investigations show a simple eco-friendly method for the synthesis of ZnO NPs from the husk of sunflower seeds. Sunflower is an economically important crop, for the formation of edible oil. The husk is considered to be a waste, product in oil industry, however, the biomolecules present in sunflower husk can be used to produce ZnO NPs. Present investigations reveal formation of ZnO NPs and investigations of their structure through scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Their optical properties have been studied by ultraviolet–visible spectrophotometer (UV–Vis) and fluorophotometer. ZnO NPs have also been investigated for their potential phytoremedial properties.  相似文献   

14.
15.
Substitued N-(isoxazol-4-yl)thioureas 1 undergo a transformation in the presence of hexacarbonylmolybdenum and acid to yield functionalized thiazoles 3 in a one-pot reaction. In a few cases, 1,4,5-trisubstituted dihydroimidazolethiones 4 are also isolated as side products. Mechanistic considerations are outlined and scope and limitations of this new methodology discussed.  相似文献   

16.
新型含吡唑基异噁唑衍生物的合成与表征   总被引:1,自引:0,他引:1  
以查尔酮4和取代的α-氯代吡唑甲醛肟3为原料,通过1,3-偶极环加成反应得到了16种新型的含吡唑基异噁唑衍生物,方法简单可行.化合物4,5-二氢-3-(1-苯基-3-甲基-5-取代-4-基)-5-芳基-4-芳酰基异噁唑啉(5)的结构经过IR,1HNMR,MS及元素分析确证.并利用单晶X射线衍射法测定了5g晶体结构.  相似文献   

17.
Reductive amination of aromatic aldehydes using NaBH4 and isoxazole amines is carried out in a Brønsted acidic ionic liquid 1‐methylimidazolium tetrafluoroborate [(HMIm)BF4]. The ionic liquid plays dual roles of solvent as well as catalyst for the efficient transformation of aromatic aldehydes to heterocyclic substituted amines in excellent yields without any undesired side product formation. The newly synthesized compounds ( 3 , 6 and 7 ) were characterized by IR, 1H NMR and mass spectral techniques.  相似文献   

18.
The kinetics of oxidation of vitamin B1 (thiamine hydrochloride) and vitamin B6 (pyridoxine hydrochloride) by chloramine-T (CAT) in perchloric acid medium and in presence of a non ionic surfactant (Triton x-100) have been investigated. A catalytic effect of the nonionic micelle on the rate of oxidation has been observed and rate is found to be proportional to 7lcub;k′ + k″ [Triton x-100]}, where k′ and k″ are the rate constants in absence and presence of surfactant, respectively. The rate shows a first-order, a fractional order and a zero order dependence on [Chloramine-T]o, [Vitamin]o and [H+]0, respectively in absence as well as in presence of surfactant. A mechanism involving association/binding between the oxidant and the surfactant micelle, which is supported by spectrophotometric evidence has been proposed. The binding parameters have also been evaluated using a pseudo-phase kinetic model.  相似文献   

19.
So far, several studies have focused on the synthesis of metallic nanoparticles making use of extracts from the fruit of the plants from the genus Capsicum. However, as the fruit is the edible, and highly commercial, part of the plant, in this work we focused on the leaves, a part of the plant that is considered agro-industrial waste. The biological synthesis of gold (AuNPs) and silver (AgNPs) nanoparticles using aqueous extracts of root, stem and leaf of Capsicum chinense was evaluated, obtaining the best results with the leaf extract. Gold and silver nanoparticles synthesized using leaf extract (AuNPs-leaf and AgNPs-leaf, respectively) were characterized by UV-visible spectrophotometry (UV-Vis), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR), X-ray Photoelectron Spectroscopy (XPS), Ultra Hight Resolution Scanning Electron Microscopy coupled to Energy-Dispersive X-ray spectroscopy (UHR-SEM-EDX) and Transmission Electron Microscopy (TEM), and tested for their antioxidant and antimicrobial activities. In addition, different metabolites involved in the synthesis of nanoparticles were analyzed. We found that by the use of extracts derived from the leaf, we could generate stable and easy to synthesize AuNPs and AgNPs. The AuNPs-leaf were synthesized using microwave radiation, while the AgNPs-leaf were synthesized using UV light radiation. The antioxidant activity of the extract, determined by ABTS, showed a decrease of 44.7% and 60.7% after the synthesis of the AuNPs-leaf and AgNPs-leaf, respectively. After the AgNPs-leaf synthesis, the concentration of polyphenols, reducing sugars and amino acids decreased by 15.4%, 38.7% and 46.8% in the leaf extract, respectively, while after the AuNPs-leaf synthesis only reducing sugars decreased by 67.7%. These results suggest that these groups of molecules are implicated in the reduction/stabilization of the nanoparticles. Although the contribution of these compounds in the synthesis of the AuNPs-leaf and the AgNPs-leaf was different. Finally, the AgNPs-leaf inhibited the growth of S. aureus, E. coli, S. marcescens and E. faecalis. All of them are bacterial strains of clinical importance due to their fast antibiotic resistance development.  相似文献   

20.
Diabetes mellitus (DM) and its complications are a severe public health concern due to the high incidence, morbidity, and mortality rates. The present study aims to synthesize and characterize silver nanoparticles (AgNPs) using the aqueous leaf extract of Psidium guajava (PGE) for investigating its antidiabetic activity. Psidium guajava silver nanoparticles (PGAg NPs) were prepared and characterized by various parameters. The in vivo study was conducted using PGE and PGAg NPs in Streptozotocin (STZ)-induced diabetic rats to assess their antidiabetic properties. STZ of 55 mg/kg was injected to induce diabetes. The PGE, PGAg NPs at a dose of 200 and 400 mg/kg and standard drug Metformin (100 mg/kg) were administered daily to diabetic rats for 21 days through the oral route. Blood glucose level, body weight changes, lipid profiles, and histopathology of the rats’ liver and pancreas were examined. In the diabetic rats, PGE and PGAg NPs produced a drastic decrease in the blood glucose level, preventing subsequent weight loss and ameliorating lipid profile parameters. The histopathological findings revealed the improvements in pancreas and liver cells due to the repercussion of PGE and PGAg NPs. A compelling effect was observed in all doses of PGE and PGAg NPs; however, PGAg NPs exhibited a more promising result. Thus, from the results, it is concluded that the synthesized PGAg NPs has potent antidiabetic activity due to its enhanced surface area and smaller particle size of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号