首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The esterification of valeric acid with n‐butanol was studied with homogeneous and heterogeneous catalysts. The activity and performance of homogeneous p‐toluenesulfonic acid and heterogeneous cation exchange resin catalysts Amberlyst 36, Indion 190, and Amberlite IRC‐50 were evaluated. The pseudo‐homogeneous kinetic model was used to investigate the kinetic parameters of homogeneous‐ and heterogeneous‐catalyzed esterification. The UNIFAC (universal functional activity coefficient) approach was used to study the nonideality of the esterification reaction. The reaction was statistically modeled and optimized by the application of response surface methodology. The effects of independent variables such as reaction temperature, initial molar ratio, and catalyst loading on the conversion of valeric acid were investigated. The optimized conditions for the esterification reaction catalyzed by Amberlyst‐36 were found as temperature 360.4 K, initial molar ratio 3.8, and catalyst loading 6.7 wt%. The predicted conversion (89%) at these optimized conditions is in good agreement with the experimental conversion (87.3 ± 1.6%).  相似文献   

2.
Non-noble Ni−Cu alloys serve as an alternative catalytic material for noble metal-based catalysts that could be applied in the efficient conversion of levulinic acid (LA) into the high value γ-valerolactone (GVL). However, maintaining the catalytic stability for Ni−Cu nanoparticles in the LA hydrogenation process remains a substantial challenge, Herein, this problem is solved by constructing carbon-protected catalytic sites within carbon layer-coated Ni−Cu nanoalloy composite via pyrolysis of NiCux(OH)/glucose precursor. The optimized NiCu0.68@C catalyst exhibits excellent stability and selectivity to GVL (>99 %) in the hydrogenation of LA reaction. Various characterization indicates that the enhancement in stability originates from the protective effect of the carbon layer, which prevents the metal leaching, oxidation and aggregation of Ni−Cu nanoparticles during the reaction process. This work greatly advances non-noble metal-catalyzed conversion of LA to GVL and helps the rational design of bimetallic catalysts.  相似文献   

3.
稻壳炭基固体酸催化剂的制备及其催化酯化反应性能   总被引:3,自引:0,他引:3  
李明  陈登宇  朱锡锋 《催化学报》2013,34(9):1674-1682
以热解稻壳炭为原料, 浓硫酸为磺化剂制备了固体酸催化剂. 采用X射线衍射、X射线光电子能谱、元素分析、孔结构分析和热重-质谱联用等手段对其进行了表征. 以油酸和甲醇的酯化为探针反应, 考察了磺化温度和时间对催化剂活性的影响, 探讨了反应条件对油酸转化率的影响, 并对所制催化剂的稳定性进行了研究. 结果表明, 制备该催化剂的适宜磺化温度和时间分别为90℃和0.25 h, 在该条件下制得的催化剂为无定形碳结构, 磺酸基密度为0.7 mmol/g. 该催化剂表现出较高的催化酯化反应活性, 在催化剂用量为5%、甲醇/油酸摩尔比为4、酯化温度和时间分别为110℃和2 h的条件下, 油酸的酯化率可达98.7%. 该催化剂具有较好的稳定性, 经7次连续反应后, 油酸的酯化率仍可达96.0%.  相似文献   

4.
In this work, a novel type of deep eutectic solvents (DES: CTAB–DES) based on cetyl trimethyl ammonium bromide (CTAB) was successfully synthesized by mixing CTAB with p-toluenesulfonic acid monohydrate and applied as catalysts for the esterification reaction of ethanol and lauric acid. The kinetics of the reaction of ethanol and lauric acid catalyzed by CTAB–DES was investigated in the temperature range of 328.15–348.15 K. The influence of different parameters including agitation speed, temperature, catalyst loading, and the lauric acid to ethanol molar ratio on the conversion of lauric acid was discussed. The kinetic experimental data obtained were correlated by the pseudo-homogeneous model, and the results show that it can predict the reaction process well. Moreover, CTAB–DES can be reused six times without any significant decrease in catalytic activity.  相似文献   

5.
Sulfonated (SO(3)H-bearing) activated carbon (AC-SO(3)H) was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO(3)H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO(3)H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO(3)H (78%) was lower than that of Amberlyst-15 (86%), which could be attributed to the fact that the SO(3)H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1). However, AC-SO(3)H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO(3)H is the leaching of SO(3)H group during the reactions.  相似文献   

6.
The catalytic activity of nano-crystalline sulfated zirconia catalyst, prepared by sol–gel method and characterized by various analytical tools, was evaluated for the esterification of caprylic acid with different short chain alcohols. The lower concentration of catalyst (0.5 wt%) exhibited 96–98% conversion of caprylic acid with methanol and 100% selectivity for methyl caprylate at 60 °C. The conversion was decreased with increasing carbon chain of alcohols namely with ethanol, n-propanol and n-butanol at 60 °C but increased significantly (91–98%) at higher reaction temperature. The selectivity for respective alkyl caprylate was observed to be 100% irrespective of the alcohol used. The activity of the catalyst was slightly decreased with successive five reaction cycles due to the water formed during the reaction.  相似文献   

7.
Catalytic hydrolysis of cellulose over solid acid catalysts is one of efficient pathways for the conversion of biomass into fuels and chemicals. High catalytic activity and easy separation from reaction media are two important factors for evaluating the performance of the solid acid catalysts for the cellulose hydrolysis. In this study, we report a core–shell Fe3O4@C-SO3H nanoparticle with a magnetic Fe3O4 core encapsulated in a sulfonated carbon shell, as recyclable catalyst for the hydrolysis of cellulose. The sulfonated carbon shell shows a good activity, presenting 48.6 % cellulose conversion with 52.1 % glucose selectivity under the moderate conditions of 140 °C after 12 h reaction. Importantly, the magnetic Fe3O4 core makes the catalysts easily separated from reaction mixtures by using the externally applied magnetic field. In addition, the Fe3O4@C-SO3H nanoparticle catalyst shows a high stability in the activity and magnetization during recycling tests, suggesting it a promising solid acid catalyst for the hydrolysis of cellulose.  相似文献   

8.
New heterogeneous catalysts for synthesis of a biodiesel fuel, modified with strongly acidic groups, were developed. The catalysts are produced by pyrolysis and subsequent sulfation of fruit kernels and granulated porous copolymers and resins. The structural-sorption and catalytic properties of the materials obtained were studied in the reaction of catalytic re-esterification of rapeseed oil by methanol and ethanol. The conditions in which carbon materials with high content of surface acid groups are obtained were optimized.  相似文献   

9.
The present study highlighted the use of modified H-ZSM-5 (Meso-HZ-5) as heterogeneous catalyst for the synthesis of octyl levulinate biolubricant by catalytic esterification of biomass derived renewable levulinic acid (LA) with n-octanol. The process variables such as catalyst loading (X1), n-octanol to LA molar ratio (X2) and reaction temperature (X3) were optimized through response surface methodology (RSM), using Box-Behnken model. Analysis of variance was performed to determine the adequacy and significance of the quadratic model. The yield of octyl levulinate was obtained to be 99% at optimum process parameters. The developed quadratic model was found to be adequate and statistically accurate with correlation value (R2) of 0.9971 to predict the yield of octyl levulinate biolubricant. The study was also extended on the validation of theoretical and experimental data, including catalyst reusability.  相似文献   

10.
《Vibrational Spectroscopy》2004,34(1):109-121
The applicability of a React-IR™ system, containing a diamond attenuated total reflection (ATR) crystal, in heterogeneous liquid-phase catalytic reactions was evaluated by analysis of the catalytic esterification of 1-octanol and hexanoic acid over a Nafion/silica catalyst in an open reflux configuration at atmospheric pressure. The reaction was performed in either cumene (at 427 K) or n-decane (at 447 K). The concentration profiles of the esterification reaction, as determined by this real-time in situ IR spectroscopic technique, are in qualitative and quantitative agreement with those determined by conventional off-line GC analysis.Interestingly, besides the bands assigned to the ester, alcohol, and acid, an additional strong and broad absorption band was observed at around 1100 cm−1 in the spectra during the esterification reaction in cumene (at 427 K). It was assessed by variation of the reaction mixture that this band is a result of the reaction of silica with octanol, yielding Si–O–R functionalities. The relevance of this reaction for the kinetics of the studied catalytic esterification, is discussed. More importantly, the contribution of solid particles and leached species to the 1100 cm−1 band is evaluated. Strong indications exist that solid catalyst particles are contributing to the spectra, implying that on-line analysis of intermediate species adsorbed on heterogeneous catalysts is in specific cases possible using the React-IR™ technique.  相似文献   

11.
通过水热合成法一步合成了具有不同疏水基团-CH3 、-(CH3)2 和-(CH3)3的双功能介孔固体酸SBA-15-SO3H-(CH3)x催化剂。通过X射线粉末衍射(XRD)、N2吸脱附、元素分析等方法对催化剂进行了表征,并在乙酸乙酯酯化反应中进行催化性能评价。结果表明,随着疏水前驱体中甲基数的增加,样品的疏水性增强。SBA-15-SO3H-(CH3)x催化剂的催化活性随着疏水性的增强而提高,而具有较强疏水性的材料SBA-15-SO3H-(CH3)3在反应中具有较高的催化性能。以SBA-15-SO3H-(CH3)3为催化剂,酯化反应的最优条件为:温度为120℃,乙酸与乙醇摩尔比为4∶1,催化剂质量分数为1 %,反应时间为1h。在此条件下,乙醇的转化率和乙酸乙酯的选择性分别为93%和100%。  相似文献   

12.
《Comptes Rendus Chimie》2017,20(5):540-548
Novel solid acid catalysts synthesized from aluminum phosphate were prepared via a precipitation method and a subsequent sulfating treatment. Their catalytic performances for the esterification of propanoic acid with n-butanol were investigated. The as-prepared catalysts were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption–desorption, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption of ammonia (NH3-TPD), infrared spectroscopy of adsorbed pyridine, and other techniques. Experimental results of esterification reactions indicated that the calcination temperature can significantly affect the catalytic performances and the catalyst calcined at 500 °C (SO42−/AlPO4-500) exhibited the highest activity. The effects of different reaction conditions including reaction time, reaction temperature, catalyst amount and alcohol/acid molar ratio were studied in detail. The maximum propanoic acid conversion of 91% was achieved under optimum reaction conditions. Furthermore, the as-prepared SO42−/AlPO4-500 catalysts were tested for their reusability in repeated reaction cycles and could be effectively regenerated by a simple reactivation method.  相似文献   

13.
张和  魏梦雪  张姣  王珂  李学强 《化学通报》2015,78(9):820-824
本文以聚苯乙烯为底物,发烟硫酸为磺化剂,在无溶剂和无催化剂条件下制得了磺化聚苯乙烯,对其酸度和结构性能进行了表征,并详细研究了其催化肉桂酸与正丁醇酯化反应的性能。在醇酸摩尔比为15∶1、环己烷作带水剂的条件下,分别考察了催化剂用量、回流温度、回流时间对酯化反应的影响,优化了反应条件,并在优化条件下,探究了其重复催化使用性能,结果表明,该催化剂重复使用15次,产率基本保持不变,仍可达到69.6%。该催化剂对肉桂酸与其他低级脂肪醇的酯化反应也具有良好的催化效果,是一种环境友好型具有潜在应用价值的固体酸催化剂。  相似文献   

14.
生物质炭基固体酸催化剂的制备   总被引:6,自引:0,他引:6  
 以生物质木粉为原料, 采用炭化-磺化法制备了炭基固体酸催化剂, 并用于油酸与甲醇的酯化反应, 考察了制备条件对炭基固体酸催化剂活性的影响. 采用 X 射线衍射、红外光谱、热重分析、高分辨透射电子显微镜及元素分析等手段对催化剂进行了表征. 结果表明, 由生物质木粉制备的炭基固体酸催化剂具有较高催化酯化反应活性, 在 400 oC 下炭化 0.5 h, 135 oC 下磺化 1 h 制备的炭基固体酸催化剂在精馏分水连续酯化装置中催化油酸与甲醇的酯化反应 2 h 时, 酯化转化率达到 96%. 采用炭化-磺化法制备的生物质炭基固体酸催化剂具有蠕虫状的无序乱层炭结构, 磺酸基 (-SO3H) 含量高达 13.25%, 并且在 220 oC 以下时具有良好的热稳定性.  相似文献   

15.
Zr–TiO2 synthesized heterogeneous catalysts could efficiently convert ethyl levulinates (ELs) to γ-valerolactone (GVL) using isopropanol (2-PrOH) as H-donor. Obtained catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), High revolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma optical emission spectroscopy (ICP-OES), NH3/CO2 temperature programmed desorption (NH3/CO2-TPD), pyridine-infrared spectroscopy, H2 temperature-programmed reduction (H2-TPR), and N2 adsorption and desorption measurements. In total, 10 wt% Zr–TiO2 with average nanoparticle sizes (ca. 4–6 nm) exhibited optimum catalytic activity after optimization of reaction temperature, reaction time, catalyst loading, as well as solvent effect. GVL yield reached 74% with 79% EL conversion at 190 °C for 5 h over 10 wt% Zr–TiO2 in 2-PrOH. The high catalytic activity could be attributed to an appropriate proportion of acidic/basic sites, high Brønted/Lewis acid ratio, and large surface areas. Both acidic and basic sites lead to a synergistic effect on the concurrent activation of H-donor and substrate. The major side product ethyl 4-hydroxypentanoate (EHP) and other byproducts were found. GVL yield achieved from methyl levulinate (ML) and levulinic acid (LA) were 65% and 20%, respectively. Catalyst deactivation was observed due to coke deposits on the catalyst’s surface. The spent catalyst proved to be reusable to recover almost completely its initial activity after calcination (300 °C, 2 h). A plausible reaction mechanism is presented on the basis of characterization results.  相似文献   

16.
固体酸改质生物油的研究   总被引:12,自引:0,他引:12  
利用乙酸和乙醇生成乙酸乙酯的酯化反应为模型反应,筛选得到催化活性最好的固体酸催化剂40%SiO2/TiO2SO42-。 在一定的反应条件下,添加固体酸催化剂和溶剂,生物油的品质得到提高,热值提高了50.7%,运动黏度降低到原来的10%,密度降低了22.6%。生物油改质前后的GC MS分析表明,固体酸可以将生物油中含有的有机羧酸转化为酯类,如甲酸酯、乙酸酯等,使生物油中的羧酸组分发生了催化酯化反应,改善了生物油的品质,生物油物理化学性能得到明显的提高。3A分子筛对生物油的脱水作用不显著,对酸性、密度、黏度等方面影响较小。  相似文献   

17.
以乙醇和乙酸的酯化作为反应模型,考察固体酸催化剂阳离子交换树脂、SO42-/ZrO2和分子筛在微波加热条件下的酯化活性。结果表明,三类固体酸催化剂的活性顺序为Amberlite树脂﹥SO42-/ZrO2﹥HZSM-5,催化剂活性与酸度一致;酯化反应中水的含量对催化剂的活性有不同程度的影响,水含量较高时催化剂SO42-/ZrO2酯化活性明显变差,而阳离子交换树脂仍具有较高的酯化活性。采用阳离子交换树脂对生物油进行微波催化酯化提质后,原生物油中含有的大量不同种类的羧酸被有效地转化成各种酯类,酯类化合物由原油中的4种增加到13种。与传统加热条件下生物油催化提质比较,生物油微波提质具有明显优势,提质后生物油组分得到优化。  相似文献   

18.
The present study highlighted the use of modified H-ZSM-5 (Meso-HZ-5) as heterogeneous catalyst for the synthesis of octyl levulinate biolubricant by catalytic esterification of biomass derived renewable levulinic acid (LA) with n-octanol. The process variables such as catalyst loading (X1), n-octanol to LA molar ratio (X2) and reaction temperature (X3) were optimized through response surface methodology (RSM), using Box-Behnken model. Analysis of variance was performed to determine the adequacy and significance of the quadratic model. The yield of octyl levulinate was obtained to be 99% at optimum process parameters. The developed quadratic model was found to be adequate and statistically accurate with correlation value (R2) of 0.9971 to predict the yield of octyl levulinate biolubricant. The study was also extended on the validation of theoretical and experimental data, including catalyst reusability.  相似文献   

19.
强酸性离子交换树脂催化合成联苯乙酸乙酯   总被引:6,自引:0,他引:6  
考察了几种强酸性离子交换树脂对联苯乙酸酯化反应的活性,结果表明,D001-CC型号的强酸性离子交换树脂对合成联苯乙酸乙酯的反应催化活性高,联苯乙酸的转化率可达88.7%,同时它的回收容易,重复使用性能好。同时考察了反应条件对酯化反应收率的影响,获得了该反应的优化条件。  相似文献   

20.
碳纳米管担载纳米Ir催化生物质基乙酰丙酸合成γ-戊内酯   总被引:1,自引:0,他引:1  
以碳纳米管(CNTs)担载Ir纳米粒子为催化剂进行生物质基平台化合物乙酰丙酸(LA)选择加氢制备γ-戊内酯(GVL)的研究,并利用X射线衍射、X射线光电子能谱和透射电镜表征了使用前后的Ir/CNT催化剂,探讨了影响LA催化加氢制GVL反应性能的因素和该反应的可能路径.结果表明,与Ru,Rh和Pd等传统铂族金属相比,Ir/CNT催化剂不但可在温和条件下(50℃,2.0 MPa,H2)实现LA至GVL的完全转化,且可对多类直接源于生物质水解的含等量LA/甲酸的“真实”体系实现GVL的高效选择合成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号