首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
Summary The cation-exchange behaviour of Mn(II), Cd(II), Co(II), Ni(II), Zn(II), Cu(II), Fe(III), Sc(III), Y(III), Eu(III), Dy(III), Ho(III), Yb(III), Ti(IV) and Nb(V) in malate media at various concentrations and pH, was studied with Dowex 50 WX8 resin (200–400 mesh) in the ammonium form. Separation of Fe(III)/Cu(II), Fe(III)/Cu(II)/Zn(II), Fe(III)/Co(II)/Mn(II), Cu(II)/Ni(II)/Mn(II), Fe(III)/Cu(II)/Co(II)/Mn(II), Fe(III)/Cu(II)/Ni(II)/Cd(II), Yb(III)/Eu(III), Sc(III)/Y(III),Sc(III)/Yb(III)/Dy(III) and Nb(V)/Yb(III)/Ho(III) has been achieved, among others.This work was supported by C.N.R. of Italy.  相似文献   

2.
The surface state of Rh/MgO catalysts modified with Co, Ni, Fe, or CeO(2) after the reduction and partial oxidation pretreatments as well as during the catalytic partial oxidation of methane has been investigated by FTIR of adsorbed CO. The results of CO adsorption on the reduced catalysts suggest the formation of Rh-M alloy on Rh-M/MgO (M = Co, Ni, Fe) and Rh particles partially covered with reduced ceria on Rh-CeO(2)/MgO. The strength of CO adsorption on Rh/MgO is weakened by the modification with Co, Ni, Fe, or CeO(2). Partial oxidation pretreatment of Rh/MgO leads to a significant decrease in the CO adsorption due to the oxidation of Rh. In contrast, on partially oxidized Rh-M/MgO (M = Co, Ni, Fe) and Rh-CeO(2)/MgO, the preferential oxidation of the surface M atoms or reduced ceria maintains the metallic Rh and preserves the CO adsorbed on the surface Rh atoms. The CO adsorption during the reaction of catalytic partial oxidation of methane on Rh/MgO and Rh-Ni/MgO is similar to that on the reduced catalysts. On the other hand, the CO adsorption during the reaction on Rh-Co/MgO, Rh-Fe/MgO, and Rh-CeO(2)/MgO is different from that on the reduced catalysts, and this is related to the structural change of these catalysts during the reaction.  相似文献   

3.
In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively.  相似文献   

4.
Summary The cation-exchange behaviour of Mg(II), Ca(II), Sr(II), Ba(II), Mn(II), Cd(II), Co(II), Ni(II), Zn(II), Cu(II) and Fe(III) in succinate media at various concentrations and pH, was studied with Dowex 50 WX8 resin (200–400 mesh) in the NH 4 + form. As examples separations of Cd(II)/Co(II), Cd (II)/Ni(II), Fe(III)/Cu(II)/Ni(II) and Mg(II)/Ca(II)/Sr(II)/Ba(II) have been achieved.This work was supported by C.N.R. of Italy.  相似文献   

5.
Feng G  Jiang L  Wen P  Cui Y  Li H  Hu D 《The Analyst》2011,136(22):4822-4829
A new ion-exchange adsorbent (IEA) derived from Fe(3)O(4)/SiO(2)-GPTMS-DEAE with paramagnetic properties was prepared. Fe(3)O(4) nanoparticles were firstly prepared in water-in-oil microemulsion. The magnetic Fe(3)O(4) particles were modified in situ by hydrolysis and condensation reactions with tetraethoxysilane (TEOS) to form the core-shell Fe(3)O(4)/SiO(2). The modified particles were further treated by 3-glycidoxypropyltrimethoxysilane (GPTMS) to form Fe(3)O(4)/SiO(2)-GPTMS nanoparticles. Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles (IEA) were finally obtained through the condensation reaction between the Cl of diethylaminoethyl chloride-HCl (DEAE) and the epoxy groups of GPTMS in the Fe(3)O(4)/SiO(2)-GPTMS. The obtained IEA has features of paramagnetic and ion exchange properties because of the Fe(3)O(4) nanoparticles and protonated organic amine in the sample. The intermediates and final product obtained in the synthesis process were characterized. The separation result of genomic DNA from blood indicated that Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles have outstanding advantages in operation, selectivity, and capacity.  相似文献   

6.
Benzene-1,3,5-tri-carboxylic acid (trimesic acid, TMA) coated on basic alumina has been shown to be an effective adsorbent for Fe(III) and Fe(II) from aqueous solution. A comparative study on the adsorption of Fe(III) and Fe(II) revealed that TMA coated alumina is more selective towards Fe(III) than Fe(II). The maximum adsorptions of Fe(III) and Fe(II) were 26.6 mg/g and 8.4 mg/g, respectively. Fe(III)/Fe(II) adsorption was also compared in some cases with adsorption of Co(II) and Ni(II). Maximum uptakes (Qm) for Co(II) and Ni(II) were found much lower (approximately 1 mg/g) than Fe(III)/Fe(II). pH dependent studies have revealed that Fe(III) was adsorbed efficiently at high acidic condition (pH approximately 1.5) compared to Fe(II), Co(II) and Ni(II), while temperature did not have significant effect on the adsorption processes. Adsorption of Fe(III) and Fe(II) was quite rapid and thermodynamically favourable. Adsorption processes fitted well in Langmuir isotherm model and followed second order rate kinetics in all cases.  相似文献   

7.
C(18)-functionalized mesoporous silica shell was successfully fabricated on the surface of an Fe(3)O(4)/SiO(2) core to obtain an Fe(3)O(4)/SiO(2)/SiO(2)-C(18) magnetic microsphere. The microsphere exhibited high extraction efficiency to organic targets and strong anti-interference ability to natural organic matter. It could be easily isolated from water solution after extraction.  相似文献   

8.
In this article, C(18)/NH(2) mixed group modified Fe(3)O(4)/SiO(2) magnetic nanoparticles (Fe(3)O(4)/SiO(2)/C(18)+NH(2) MNPs) were successfully synthesized and used for the extraction of perfluorinated compounds (PFCs) from large volume of water solution. The Fe(3)O(4)/SiO(2)/C(18)+NH(2) MNPs, about 25 nm in diameter, possess high extraction ability to the anionic organic pollutants due to the dual function of hydrophobic octadecyl group and cationic aminopropyl groups at low pH. More than 90% of the targets can be extracted from 500 mL of water solution with 0.1g of the MNP sorbent at pH 3. Twenty min is sufficient to reach adsorption equilibrium, and the targets can be desorbed from the sorbent readily with 12 mL of alkalized methanol after magnetic separation. Simplified extraction procedure could be achieved because of the superparamagnetism and high saturation magnetization of the sorbent (44 emu g(-1)). Therefore, preconcentration of trace level of PFCs from water solution can be performed by using this Fe(3)O(4)/SiO(2)/C(18)+NH(2) MNP sorbent which are stable for multiple reuses.  相似文献   

9.
磁载光催化剂TiO2/SiO2/Ni0.5Fe2.5O4的制备及其催化氧化性能   总被引:5,自引:0,他引:5  
采用固相反应法制备磁载体(SiO2/Ni0.5Fe2.5O4),溶胶-凝胶法得到易于磁分离回收的磁载光催化剂TiO2/SiO2/Ni0.5Fe2.5O4。用XRD、SEM、IR和UV-Vis等进行表征。研究了太阳光下催化剂对亚甲基蓝溶液的脱色性能。结果表明,在太阳光下,磁载光催化剂TiO2/SiO2/Ni0.5Fe2.5O4可使亚甲基蓝溶液迅速脱色;3次循环使用后脱色率仍为95%以上,回收率为98.8%。  相似文献   

10.
The catalytic performance of cluster-derived PtFe/SiO(2) bimetallic catalysts for the oxidation of CO has been examined in the absence and presence of H(2) (PROX) and compared to that of Pt/SiO(2). PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were prepared from PtFe(2)(COD)(CO)(8) and Pt(5)Fe(2)(COD)(2)(CO)(12) organometallic cluster precursors, respectively. FTIR data indicate that both clusters can be deposited intact on the SiO(2) support. The clusters remained weakly bonded to the SiO(2) surface and could be extracted with CH(2)Cl(2) without any significant changes in their structure. Subsequent heating in H(2) led to complete decarbonylation of the supported clusters at approximately 350 degrees C and the formation of Pt-Fe nanoparticles with sizes in the 1-2 nm range, as indicated by HRTEM imaging. A few larger nanoparticles enriched in Pt were also observed, indicating that a small fraction of the deposited clusters were segregated to the individual components following the hydrogen treatment. A higher degree of metal dispersion and more homogeneous mixing of the two metals were observed during HRTEM/XEDS analysis with the cluster-derived samples, as compared to a PtFe/SiO(2) catalyst prepared through a conventional impregnation route. Furthermore, the cluster-derived PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were more active than Pt/SiO(2) and the conventionally prepared PtFe/SiO(2) sample for the oxidation of CO in air. However, substantial deactivation was also observed, indicating that the properties of the Pt-Fe bimetallic sites in the cluster-derived samples were altered by exposure to the reactants. The Pt(5)Fe(2)/SiO(2) sample was also more active than Pt/SiO(2) for PROX with a selectivity of approximately 92% at 50 degrees C. In this case, the deactivation with time on stream was substantially slower, indicating that the highly reducing environment under the PROX conditions helps maintain the properties of the active Pt-Fe bimetallic sites.  相似文献   

11.
Journal of Thermal Analysis and Calorimetry - The paper presents the synthesis of ZnFe2O4/SiO2, NiFe2O4/SiO2, Ni0.4Zn0.6Fe2O4/SiO2 and Ni0.4Zn0.6Fe2O4/PVA-SiO2 nanocomposites by a modified...  相似文献   

12.
A series of CoO(x)-doped silica xerogels with various Co(2+) loadings (Co/Si = 0, 1, 2, 4, 6, and 10 mol %) has been prepared. All xerogels exhibit large (800-1050 m(2)/g) surface areas. Narrow pore size distributions with pore size maxima around 3 nm are characteristic for Co/Si = 1, 2, 4, 6, 10 samples. As-prepared CoO(x)/SiO(2) xerogels show high catalytic activity in the air oxidation of gaseous acetaldehyde at room temperature. Carbon dioxide and trace amounts of methane are the only products detected in the gas phase. Acetic acid, a less volatile product, resides on the surface of the xerogels but can slowly desorb. The formation of CO(2) begins after an induction period. The beginning of CO(2) production coincides with the conversion of Co(2+) incorporated in the SiO(2) framework into Co(3+). Thermogravimetry/gas chromatography/mass spectrometry analysis, UV-vis and FTIR spectroscopies, as well as kinetic measurements are employed for CoO(x)/SiO(2) catalyst characterization. A possible mechanism of the reaction is discussed.  相似文献   

13.
多核超顺磁性Ni0.5Zn0.5Fe2O4/SiO2催化载体的制备与表征   总被引:3,自引:2,他引:1  
采用化学共沉淀法与溶胶-凝胶法相结合, 在制备过程中改变磁性纳米粒子和TEOS的引入方式, 成功地制备了多核超顺磁性Ni0.5Zn0.5Fe2O4/SiO2催化剂载体. 采用透射电子显微镜(TEM)、氮气吸附、X射线衍射(XRD)及物理性质综合测试系统(PPMS)对样品进行了表征, 利用永磁铁对载体的分离效果进行了验证. 研究结果表明, 改进制备方法后, 制备的载体比表面积明显增大, 这有利于催化剂在载体上的分散与固载; 样品的饱和磁化强度明显增加, 表明样品具有很好的磁响应能力, 有利于催化剂的分离, 同时, 载体的超顺磁特性也有利于液相催化体系中催化剂的分散.  相似文献   

14.
The syntheses and single crystal X-ray structural analysis of five novel hetero- and homometallic mu 3-oxo trinuclear cluster with the formula [Fe (III) 2M (II)(mu 3-O)(mu-O 2CCH 3) 6(4-Rpy) 3]. x(4-Rpy). y(CH 3CN) where R = Ph for 1(Fe 2Mn), 2(Fe 2Fe), 3(Fe 2Co), 4(Fe 2Ni) and R = CF 3 for 5(Fe 2Co), are reported. The persistence of the structure for compounds 2- 5 in dichloromethane solution in the temperature range 190-320 K is demonstrated by (1)H and (19)F NMR spectroscopy. Even at the lowest temperature, the electron exchange in the homometallic mixed-valence compound 2(Fe 2Fe) is in the fast regime at the NMR time scale. Variable temperature and pressure NMR line broadening allowed quantifying the fast coordinated/free 4-Rpy exchanges at the two labile metal centers in these clusters: 2: Fe (III)( k (298)/10 (3) s (-1) = 16.6; Delta H (++) = 60.32 kJ mol (-1); Delta S (++) = + 34.8 J K (-1) mol (-1); Delta V (++) = + 12.5 cm (3) mol (-1)); 3: Fe (11.9; 58.92; +30.7; +10.6) and Co (2.8; 68.24; +49.8; +13.9); 4: Fe(12.2; 67.91; +61.0; -) and Ni (0.37; 78.62; +67.8; +12.3); 5: Fe (46; 58.21; +39.3; +14.2) and Co (4.7; 55.37; +11.2; +10.9). A limiting D mechanism is assigned to these exchange reactions. This assignment is based on a first-order rate law, the detection of intermediates, the positive and large entropies and volumes of activation. The order of reactivity k (Co) > k (Ni) is expected for a D mechanism at these metal centers: their low exchange rates are due to their strong binding with the 4-Rpy donor. Surrounded by oxygen donors the d (5) iron(III) usually reacts associatively; however, here due to low affinity of this ion for nitrogen the mechanism is D and the rate of exchange is very fast, even faster than on the divalent ions. There is no significant effect of the divalent ion in cluster 2, 3, and 5 on the exchange rates of 4-Phpy at the iron center, which seems to indicate that the specific electronic interactions between the three ions making the clusters do not influence the Fe (III)-N bond strength.  相似文献   

15.
Comparison was made for the structural, IR spectral, and thermoanalytical characteristics of normal [M1(H2O)2(C4H2O4)](H2O) (M1 = Co(II) and Ni(II)) and acid maleates [M2(H2O)4(C4H3O4)2] (M2 = Mn(II), Fe(II), Co(II) and Ni(II)). Only structures of acid maleates contain intramolecular asymmetric hydrogen bond whose asymmetry increases in the series of transition metal salts. Thermal decomposition of Co(II), Ni(II) normal maleates, and Mn(II), Fe(II), Co(II), Ni(II) acid maleates proceeds in three stages. Onset decomposition temperatures for the first and second stages decreases in the series of normal maleates Co(II) ≥ Ni(II) and increases in the series of acid maleates Fe(II) < Co(II) < Ni(II) ≈ Mn(II). Onset temperature of the third stage decreases in the series of both normal maleates Co(II) > Ni(II) and acid maleates Mn(II) > Fe(II) > Co(II) > Ni(II).  相似文献   

16.
"Tritopic" picolinic dihydrazone ligands with tridentate coordination pockets are designed to produce homoleptic [3 x 3] nonanuclear square grid complexes on reaction with transition-metal salts, and many structurally documented examples have been obtained with Mn(II), Cu(II), and Zn(II) ions. However, other oligomeric complexes with smaller nuclearities have also been discovered and identified structurally in some reactions involving Fe(II), Co(II), Ni(II), and Cu(II), with certain tritopic ligands. This illustrates the dynamic nature of the metal-ligand interaction and the conformationally flexible nature of the ligands and points to the possible involvement of some of these species as intermediates in the [3 x 3] grid formation process. Examples of mononuclear, dinuclear, hexanuclear, heptanuclear, and nonanuclear species involving Fe(II), Co(II), Ni(II), and Cu(II) salts with a series of potentially heptadentate picolinic dihydrazone ligands with pyrazine, pyrimidine, and pyridine end groups are described in the present study. Iron and cobalt complexation reactions are complicated by redox processes, which lead to mixed-oxidation-state Co(II)/Co(III) systems when starting with Co(II) salts, and reduction of Fe(III) to Fe(II) when starting with Fe(III). Magnetic exchange within the polynuclear structural frameworks is discussed and related to the structural features.  相似文献   

17.
Electrochemical, magnetic, and spectroscopic properties are reported for homoleptic divalent (M = Mn, Fe, Co, Ni, Ru) and trivalent (M = Cr, Mn, Fe, Co) metal-bis[poly(pyrazolyl)borate] complexes, [M(pzb)(2)](+/0), where pzb(-) = hydrotris(pyrazolyl)borate (Tp), hydrotris(3,5-dimethylpyrazolyl)borate (Tp), or tetrakis(pyrazolyl)borate (pzTp). Ligand field strengths in metal-pzb complexes increase as Tp < Tp < pzTp, which reflects the importance of steric rather than electronic effects on spectroscopic properties. However, metal-centered redox potentials become more negative as pzTp < Tp < Tp, which follows the electron-donating ability of the ligands. Co(III)/Co(II) and Mn(III)/Mn(II) electrode reactions are accompanied by a change in metal atom spin-state; i.e., (S = 0) [Co(pzb)(2)](+) + e(-) <==> (S = 3/2) [Co(pzb)(2)] and (S = 1) [Mn(pzb)(2)](+) + e(-) <==> (S = 5/2) [Mn(pzb)(2)]. Apparent heterogeneous electron-transfer rate constants derived from sweep-rate dependent cyclic voltammetric peak potential separations in 1,2-dichloroethane are small and decrease as pzTp > Tp > Tp for the Co(III)/Co(II) couples. Slow electron transfer is characteristic of coupled electron transfer and spin exchange. [M(Tp)(2)](+/0) redox potentials relative to values for other homoleptic MN(6)(3+/2+) couples change as M varies from Cr to Ni. For early members of the series, [M(Tp)(2)](+/0) potentials nearly equal those of complexes with aliphatic N-donor ligands (e.g., triazacyclononane, sarcophagine). However, [M(Tp)(2)](+/0) potentials approach those of [M(bpy)(3)](3+/2+) for later members of the series. The variation suggests a change in the nature of the metal-pzb interaction upon crossing the first transition row.  相似文献   

18.
A series of [Tm(Me)M(mu-Cl)]2 and Tm(R)MCl (Tm(R) = tris(mercaptoimidazolyl)borate; R = Me, tBu, Ph, 2,6-iPr2C6H3 (Ar); M = Mn, Fe, Co, Ni) complexes have been prepared by treatment of NaTm(Me) or LiTm(R) with an excess amount of metal(II) chlorides, MCl2. Treatment of Tm(R)MCl (R = tBu, Ph, Ar) with NaI led to a halide exchange to afford Tm(R)MI. The molecular structures of [Tm(Me)M(mu-Cl)]2 (M = Mn, Ni), [Tm(Me)Ni(mu-Br)]2, Tm(tBu)MCl (M = Fe, Co), Tm(Ph)MCl (M = Mn, Fe, Co, Ni), Tm(Ar)MCl (M = Mn, Fe, Co, Ni), Tm(Ph)MI (M = Mn, Co), and Tm(Ar)MI (M = Fe, Co, Ni) have been determined by X-ray crystallography. The Tm(R) ligands occupy the tripodal coordination site of the metal ions, giving a square pyramidal or trigonal bipyramidal coordination geometry for Tm(Me)M(mu-Cl)]2 and a tetrahedral geometry for the Tm(R)MCl complexes, where the S-M-S bite angles are larger than the reported N-M-N angles of the corresponding hydrotris(pyrazolyl)borate (Tp(R)) complexes. Treatment of Tm(Ph)2Fe with excess FeCl2 affords Tm(Ph)FeCl, indicating that Tm(R)2M as well as Tm(R)MCl is formed at the initial stage of the reaction between MCl2 and the Tm(R) anion.  相似文献   

19.
The step-wise assembly of the high nuclearity cluster, {[Ni(II)(H2O)5]6[Co(III)(tmphen)2]3[Fe(II)(CN)6]2}13+, is achieved by treating {[Co(tmphen)2]3[Fe(CN)6]2} with six equivalents of Ni(ClO4)2 in aqueous MeOH.  相似文献   

20.
郭燕燕  代成娜  雷志刚 《催化学报》2018,39(6):1070-1080
过氧化氢(H2O2)是一种绿色化工原料和环境友好氧化剂. 目前, 超过 98% 的H2O2是通过蒽醌法生产. 蒽醌法主要包括 2-乙基蒽醌氢化生成 2-乙基氢蒽醌和 2-乙基氢蒽醌氧化生成 2-乙基蒽醌和H2O2的过程. 其中, 2-乙基蒽醌氢化是关键步骤. 在氢化过程中, 生成的 2-乙基氢蒽醌和四氢-2-乙基氢蒽醌是目标产物, 同时生成许多副产物. 目前, Pd 颗粒催化剂是广泛使用的催化剂, 但是蒽醌氢化过程中, 质量传递是主要的控制因素. 与颗粒催化剂对比, 整体式催化剂可以减弱整个反应的内外扩散, 提高反应速率. 很多研究结果显示, 整体式催化剂的传质优于颗粒催化剂, 可以提高催化效率. 近期许多研究显示, 双金属颗粒催化剂在很多氢化反应中体现出优异的催化性能. 本工作制备了双金属整体式催化剂, 考察了其在蒽醌氢化过程中的催化性能.首先, 通过浸渍法制备了4 种双金属整体式催化剂 Pd-M/SiO2/COR (M = Ni, Fe, Mn和 Cu)以及Pd/SiO2/COR和Ni/SiO2/COR两种单金属整体式催化剂. 催化活性结果显示, Ni/SiO2/COR的H2O2产量低于 Pd/SiO2/COR, 而且在 700 oC还原的 Pd-Ni/SiO2/COR 整体式催化剂在 Pd/M = 2 时取得了最高选择性 (95.3%) 和H2O2产量 (7.5 g/L). 然后, 考察了金属负载量的影响. 结果显示, 在金属负载量低于 0.4% 时, 随着金属负载量增加, 选择性和H2O2产量增加, 在金属负载量高于0.4% 时, 随着金属负载量增加, 选择性和H2O2产量降低. TEM结果表明, 添加第二种金属后, 双金属整体式催化剂颗粒尺寸变小, 分布更均匀. EDS结果显示, 双金属形成了合金. H2-TPR结果显示, 随着Pd/M比率增加, 还原温度降低, 说明Pd有助于第二种金属氧化物的还原. 这可能是由于 Pd 表面的氢溢流到第二种金属 (Ni, Fe, Mn和 Cu) 表面. 此外, 文献结果表明, 合金的形成能够抑制 PdH 的形成. 本工作表明添加第二种金属 (Ni, Fe, Mn和Cu) 后, PdH 的峰强度减弱或者峰消失, 也说明形成了合金. XPS 结果显示, 添加第二种金属后,在 336.3 ± 0.1 和 341.4 ± 0.1 eV 出现了新的 Pd 3d5/2和 Pd 3d3/2峰, 说明形成了合金. H2-O2滴定结果表明, Pd-Ni/SiO2/COR的Pd分散度和Pd比表面积都高于其他双金属催化剂, 说明第二种金属 Ni 更有利于促进 Pd 的分散, 减弱颗粒集聚, 揭示了Pd 和 Ni 之间强烈的相互作用. DFT 计算结果显示, Pd3M1(M = Ni, Fe, Mn和Cu) 双金属整体式催化剂和 2-乙基蒽醌之间的结合能低于 Pd/SiO2/COR和 2-乙基蒽醌之间的结合能, 但是 Pd3M1(M = Ni, Fe和Mn) 双金属催化剂和 2-乙基氢蒽醌之间的结合能减小得很少, 这可能是由于 2-乙基蒽醌的 C=O 和第二种金属之间具有强烈相互作用的缘故. Pd3Cu1双金属催化剂和 2-乙基氢蒽醌之间的结合能减小很多, 主要是由于 Pd3Cu1表面不利于 2-乙基氢蒽醌的吸附.因此, Pd-Ni/SiO2/COR 比 Pd/SiO2/COR, Ni/SiO2/COR 和其他的双金属整体式催化剂具有更高的选择性和H2O2产量, 主要是由于合金的形成以及 2-乙基氢蒽醌的 C=O 双键和 2-乙基氢蒽醌强烈的相互作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号