首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present studies, renewable and nontoxic biopolymer, pectin, was extracted from Indian red pomelo fruit peels and used for the synthesis of cerium oxide nanoparticles (CeO2-NPs) having bio-therapeutic potential. The structural information of extracted pectin was investigated by FTIR and NMR spectroscopic techniques. Physicochemical characteristics of this pectin suggested its application in the synthesis of metal oxide nanoparticles. Using this pectin as a template, CeO2-NPs were synthesized by simple, one step and eco-friendly approach. The UV–Vis spectrum of synthesized CeO2-NPs exhibited a characteristic absorption peak at wavelength 345 nm, which can be assigned to its intrinsic band gap (3.59 eV) absorption. Photoluminescence measurements of CeO2-NPs revealed that the broad emission was composed of seven different bands. FTIR analysis ensured involvement of pectin in the formation and stabilization of CeO2-NPs. FT-Raman spectra showed a sharp Raman active mode peak at 461.8 cm?1 due to a symmetrical stretching mode of Ce–O vibration. DLS, FESEM, EDX, and XRD analysis showed that the CeO2-NPs prepared were polydispersed, spherical shaped with a cubic fluorite structure and average particle size ≤40 nm. These CeO2-NPs displayed broad spectrum antimicrobial activity, antioxidant potential, and non-cytotoxic nature.  相似文献   

2.
Nanoparticles of cerium oxide (CeO2-NPs), as a metal oxide of rare earth, have found an important role in improving technologies such as polishing, the degradation of harmful industrial dyes and even the treatment of some diseases. Therefore, the development of quick and inexpensive production methods for CeO2-NPs is sought by researchers. In the present study, we report the biosynthesis of CeO2-NPs using aqueous extract of Salvadora persica. Synthesized nanoparticles were investigated through powder X-ray diffraction (PXRD), ultraviolet–visible (UV–vis), Fourier transform infrared, transmission electron microscope (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray and Raman techniques. The UV–vis result shows an absorption peak at 325 nm, which confirms the formation of CeO2-NPs. The band-gap of synthesized nanoparticles (4.1 eV) is higher than in its bulk state. PXRD and Raman show a crystalline fluorite cubic structure for synthesized nanoparticles. The morphology of synthesized nanoparticles shows a uniform and almost spherical shape via TEM and FESEM images. The particles size was estimated in the range of 10–15 nm. Cytotoxic activity of synthesized nanoparticles was determined through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay against a colon (HT-29) cancer cell line. The results did not show any significant cytotoxic effect for synthesized samples even for concentration higher than 800 μg/mL. Hence, CeO2-NPs were synthesized using a natural source; the procedure was rapid with good productivity and biosynthesized nanoparticles were non-toxic.  相似文献   

3.
透明纳米CeO2的合成与表征   总被引:15,自引:8,他引:15  
采用胶溶法合成了表面修饰十二烷基苯磺酸钠(DBS)的CeO2纳米粒子有机溶胶,探讨了制轩CeO2纳米有机溶胶的最佳实验条件TEM分析表明,CeO2(DBS)纳米粒子呈球形,约3nm,粒径分布均匀,无团聚现象。ED分析表明,CeO2(DBS)纳米粒子为多晶结构。  相似文献   

4.
Biofunctionalized TiO2 nanoparticles with a size range of 18.42±1.3 nm were synthesized in a single-step approach employing Grape seed extract (GSE) proanthocyanin (PAC) polyphenols. The effect of PACs rich GSE corona was examined with respect to 1) the stability and dispersity of as-synthesized GSE-TiO2-NPs, 2) their antiproliferative and antibiofilm efficacy, and 3) their propensity for internalization and reactive oxygen species (ROS) generation in urinary tract infections (UTIs) causing Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus saprophyticus strains. State-of-the-art techniques were used to validate GSE-TiO2-NPs formation. Comparative Fourier transformed infrared (FTIR) spectral analysis demonstrated that PACs linked functional -OH groups likely play a central role in Ti4+ reduction and nucleation to GSE-TiO2-NPs, while forming a thin, soft corona around nascent NPs to attribute significantly enhanced stability and dispersity. Transmission electron microscopic (TEM) and inductively coupled plasma mass-spectroscopy (ICP-MS) analyses confirmed there was significantly (p<0.05) enhanced intracellular uptake of GSE-TiO2-NPs in both Gram-negative and -positive test uropathogens as compared to bare TiO2-NPs. Correspondingly, compared to bare NPs, GSE-TiO2-NPs induced intracellular ROS formation that corresponded well with dose-dependent inhibitory patterns of cell proliferation and biofilm formation in both the tested strains. Overall, this study demonstrates that -OH rich PACs of GSE corona on biogenic TiO2-NPs maximized the functional stability, dispersity and propensity of penetration into planktonic cells and biofilm matrices. Such unique merits warrant the use of GSE-TiO2-NPs as a novel, functionally stable and efficient antibacterial nano-formulation to combat the menace of UTIs in clinical settings.  相似文献   

5.
在氮气气氛中合成了具有较高氧缺陷浓度的CeO_2载体,采用浸渍法制备了Ni含量为10%的Ni/CeO_2-N催化剂,考察了其顺酐液相加氢性能,并与氧气气氛中制得的CeO_2载体负载Ni催化剂作了对比.N_2低温物理吸脱附,X-射线衍射,拉曼光谱,H_2程序升温还原等表征手段表明,在氮气气氛中合成的CeO_2具有较高浓度的氧缺陷位,在催化剂还原过程中可促进NiO物种的还原,同时在催化剂表面生成更多的氧缺陷位.该氧缺陷位可与活性金属Ni物种协同作用,显著提高催化剂的C=C及C=O加氢活性.  相似文献   

6.
Nitrogen-doped CeO2 nanoparticles were synthesized through a wet-chemical route. Nitrogen has been successfully incorporated into CeO2 nanoparticles and the nitrogen-doping level was also successfully controlled. The optical properties due to the different N-doping levels in CeO2 nanoparticles were characterized by UV-Vis diffuse reflectance spectroscopy (DRS), which showed a visible-light absorbance shift. The resulting nanoparticles show enhanced visible-light sensitivity and photocatalytic activity compared to undoped CeO2 nanoparticles. DFT calculations were performed to explore the effect of nitrogen doping versus oxygen vacancies. The calculations show that the change of the electronic structure upon N-doping CeO2 is quite different from that of N-doped TiO2, which has been studied extensively.  相似文献   

7.
采用沉淀法制备了球形CeO2纳米粒子,将其作为核粒子溶液,然后向其中滴加四氯合金酸溶液,在CeO2胶体表面利用柠檬酸钠还原[AuCl4]-离子,得到了CeO2@Au核壳结构纳米粒子。TEM分析表明,CeO2纳米粒子分散效果好,粒径为5 nm;CeO2@Au核壳粒子为球形,无团聚,平均粒径为15 nm。XRD分析表明,CeO2@Au核壳粒子为晶型结构,属于立方晶系,CeO2空间群为O5H-FM3M,Au的空间群为Fm-3m。UV-vis分析发现,CeO2@Au核壳粒子在300和520 nm处呈现出两个比较强的吸收峰,分别对应于CeO2胶体溶液的吸收峰和金粒子的表面等离子共振吸收峰。EDS分析了核壳结构CeO2@Au纳米粒子中存在Ce,O和Au 3种元素。XPS分析表明,Ce3d3/2和Au4f电子结合能与标准结合能相比发生了变化,说明CeO2与Au之间存在着相互作用。  相似文献   

8.
Silver-titania nanocomposites (Ag-TiO2 NCs) have unique functional attributes due to their photocatalytic and antibacterial properties. In this study, titania nanoparticles (TiO2-NPs) were successfully in-situ decorated with silver nanoparticles (Ag-NPs) using the aqueous extract of goji berries (Lycium barbarum L.) as a bioreducing and stabilizing agent. Different Ag-TiO2 NCs were synthesized by treating different concentrations of silver nitrate with a specific concentration of TiO2-NPs in the presence of fruit extract. The green-synthesized NCs were characterized using several techniques viz., ultraviolet–visible spectrophotometry, X-ray diffractometry (XRD), scanning electron microscopy, field-emission transmission electron microscopy (FE-TEM), Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. XRD analysis revealed the formation of face-centered cubic (fcc) crystals, and FE-TEM analysis revealed the embedment of Ag-NPs throughout the surface of TiO2-NPs. The average size of Ag-NPs on TiO2-NPs increased from 11.2 ± 3.05 nm to 16.4 ± 4.5 nm with an increase in the concentration of silver ions, and the morphology of Ag-NPs was predominantly quasi-spherical and hexagonal. These NCs exhibited an excellent photocatalytic degradation of an azo dye, methylene blue (MB). The synthesized Ag-TiO2 NCs (3:1) showed higher photocatalytic degradation efficiency of ∼ 93.4% for MB in 130 min under visible light irradiation. Ag-TiO2 NCS also exhibited good antibacterial activities towards Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). Therefore, the formation of Ag-NPs on the surface of TiO2-NPs to form Ag-TiO2 NCs exhibits eco-friendly photocatalytic degradation of azo dye contaminants as well as antibacterial activity.  相似文献   

9.
Effective removal of organic pollutants from wastewater becomes notable research because of its ecological and environmental importance. In the present study Andrographis echioides leaf extract was used for the synthesis of calcium hydroxide nanoparticles (Ca(OH)2-NPs) from calcium oxide as the calcium source. The secondary metabolites present in the plant source act as a capping agent for the formation Ca(OH)2-NPs. Further NPs were applied for photocatalytic degradation. The intention of the approach is to be low-cost preparation and easy degradation (degradation of dye without any effect) to the environment. The synthesized Ca(OH)2-NPs was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, ultra violet diffuse reflectance spectroscopy, energy dispersive X-ray spectroscopy, zeta potential and high-resolution transmission electron microscopy. The photocatalytic degradation of methylene blue (dye pollutant) studied under three different light sources such as UV, visible and sun light using Ca(OH)2-NPs. Degradation efficiency of Methylene blue dye examined under UV–Vis spectroscopy. Degradation percentage of Ca(OH)2-NPs under UV, visible and sunlight are (98.96, 97.52 and 96.38%) respectively. The overall study suggests that Ca(OH)2-NPs exhibit excellent photocatalytic property against UV, visible and sunlight.  相似文献   

10.
沉淀法制备CeO2纳米晶与表征   总被引:60,自引:6,他引:54  
采用乙醇为分散剂和保护剂,用反向沉淀法制备了不同粒径的CeO2纳米晶。XRD分析表明,当焙烧温度为250-800℃时,所合成的CeO2纳米粒子属于立方晶系,空间群为OH^5-FM3M。TEM分析表明,CeO2纳米粒子呈球形,粒度随焙烧温度的增加而增大。热失重分析表明样品的热失重主要受温度的影响,而焙烧时间的影响不大。相对密度分析表明,随CeO2纳米晶粒度的增大,粉末的密度增加。  相似文献   

11.
The formation mechanism of uniform CeO2 structure at the nanometer scale via a wet-chemical reaction is of great interest in fundamental study as well as a variety of applications. In this work, large-scale well-crystallized CeO2 nanorods with uniform diameters in the range of 20-30 nm and lengths up to tens of micrometers are first synthesized through a hydrothermal synthetic route in 5 M KOH solution at 180 degrees C for 45 h without any templates and surfactants. The nanorod formation involves dehydration of CeO2 nanoparticles and orientation growth along the 110 direction in KOH solution. Subsequently, gold nanoparticles with crystallite sizes between 10 and 20 nm are loaded on the surface of CeO2 nanorods using HAuCl4 solution as the gold source and NaBH4 solution as a reducing agent. The synthesized Au/CeO2 nanorods demonstrate a higher catalytic activity in CO oxidation than the pure CeO2 nanorods.  相似文献   

12.
Formation and oxidation state of CeO(2-x) nanotubes   总被引:1,自引:0,他引:1  
Well-crystalline CeO(2-x) nanotubes are synthesized via a mild hydrothermal reaction route using cerium nitrate and ammonium hydroxide as reactants. The CeO(2-x) nanotubes have the same structure as the bulk CeO2 but larger lattice parameter. The measurement of the ratio of M5/M4 edge shows the valence reduction of cerium ions for the CeO(2-x) nanotubes.  相似文献   

13.
Green synthesis of nanoparticles has gained tremendous attention in recent era which is pertinent to their unique properties and broad applications. This approach is cost-effective, environment-friendly as well as highly biocompatible. In this research, chromium oxide nanoparticles (Cr2O3-NPs) were synthesized by using Apis mellifera honey as a reducing and capping agent and their anti-bacterial, anti-biofilm, anti-oxidant and anti-inflammatory abilities were explored. Ultra Violet-visible double beam spectroscopy revealed that chromium underwent d-d transition during synthesis of nanoparticles. X-ray diffraction (XRD) analysis verified that Cr2O3-NPs were crystalline in nature and average crystal size was 24 nm. Energy-dispersive X-ray (EDX) analysis confirmed that chromium and oxygen formed nano-composites in solution which possessed a stable form. Scanning electron microscopy (SEM) provided morphological characteristics of nanoparticles and proved that their average size was 20 nm. Cr2O3-NPs displayed excellent anti-bacterial activity (minimum inhibition zone, 20 mm; maximum inhibition zone, 26 mm) against 30 selected clinical isolates of Klebsiella pneumoniae as determined by agar well-diffusion method. Their antibacterial activity was considerably superior to that of three selected antibiotics including Gentamicin, Ciprofloxacin and Cefepime. However, no synergism was observed between nanoparticles and these antibiotics as calculated from fractional inhibitory concentration index (FICI) values all of which were  > 1. The synthesized nanoparticles possessed good biofilm inhibition potential (60 % to 73 %) at all concentrations (20 µg/ml to 50 µg/ml) tested. Cr2O3-NPs exhibited excellent anti-oxidant activity (IC50 = 128 µg/ml) which was nearly equivalent to that of ascorbic acid. Anti-inflammatory effect of Cr2O3-NPs was also significant (IC50 = 549 µg/ml) and comparable to that of standard. Both anti-oxidant and anti-inflammatory capacities were found to increase with an increase in the concentration of Cr2O3-NPs. In conclusion, this work revealed that Apis mellifera honey-mediated synthesis of Cr2O3-NPs could be investigated for future biomedical applications.  相似文献   

14.
The cantaloupe-like particles of CeOHCO3 were synthesized in aqueous solution by using cetyltrimethylammonium bromide (CTAB) as soft template. Then, the bunchiness rods of CeO2 were obtained by calcining CeOHCO3 at 450 ℃. The results of thermogravimetric/differential thermal analysis reveal that an endothermic reaction with decomposition is involved in the transformation process from CeOHCO3 to CeO2. By scanning electron microscopy and X-ray diffraction analysis, it is found that the orthorhombic phase CeOHCO3 particles are constituted of short nanorods with diameters ranging from several tens nm to over 100 nm, and the cubic phase CeO2 rods are composed of small particles with diameter ca. 15 nm. From the results of UV-Vis absorption and photoluminescence analysis, it is found that the CeO2 possess abundant defects, and the band gaps of the CeO2 and CeOHCO3 are ca. 2.70 eV and 3.87 eV, respectively.  相似文献   

15.
In this work, we have reported the influence of the addition of base (KOH) on the physicochemical property of ceria synthesized by alcohothermal process, and the alcohothermal mechanism was also put forward. Furthermore, the prepared CeO2 was used as the support to prepare CuO/CeO2 catalysts via the wet impregnation method. The samples were characterized by N2 adsorption-desorption, X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and temperature-programmed reduction by H2 (H2-TPR). The catalytic properties of the CuO/CeO2 catalysts for low-temperature CO oxidation were studied using a microreactor-GC system. The crystal size of CeO2-A was much smaller than that of CeO2-B, and the corresponding copper oxide catalysts exhibited higher catalytic activity than that of the CeO2-B-supported catalysts under the same reaction conditions. The alcohothermal mechanism indicated that KOH plays a key role in determining the physicochemical and catalytic properties of ceria-based materials.  相似文献   

16.
采用高温氮化法在Ti片基底上生长一层TiN0.3薄膜,进一步利用电化学沉积法在TiN0.3薄膜上生长CeO2,制备了TiN0.3/CeO2复合材料.分别用X射线衍射和扫描电镜研究了复合材料的晶体和形貌结构,用紫外-可见光谱探究了材料的光学吸收性能.结果表明,球状CeO2颗粒均匀地分布在TiN0.3表面;该复合光阳极除了TiN0.3对可见光的吸收外,外层的CeO2同时实现了对紫外光的吸收.光电催化性能研究发现,TiN0.3/CeO2复合光阳极能够显著提高TiN0.3或CeO2的光电流密度,同时增加光电流的稳定性.TiN0.3/CeO2独特的双层结构是其光电催化性能提高的主要原因.在TiN0.3与CeO2界面处异质结构的驱动下,CeO2层中的光生电子迁移至TiN0.3层,而相应的光生空穴在界面处被Ce3+所消耗,从而提高了CeO 2层中电子和空穴的分离效率,光电流密度也随之提高;同时,位于CeO2与电解液界面处的Ce3+作为水分子的吸附中心和反应活性中心,加快了界面处水的氧化反应,从而进一步促进了稳定光电流的产生.鉴于TiN0.3/CeO2光阳极材料优良的光电催化性能,其在太阳能光电催化领域具有潜在的应用,对于新型高效光电转化材料的设计与合成具有借鉴作用.  相似文献   

17.
The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in improving capacitor performance. In this study, active carbon/Fe3O4-NPs nanocomposites(AC/Fe3O4-NPs) were synthesized using a facile hydrothermal method and ultrasonic technique. Transmission electron micrographs(TEM) showed that Fe3O4nanoparticles(Fe3O4-NPs) grew along the edge of AC. AC/Fe3O4-NPs nanocomposites were further used as an electrochemical electrode, and its electrochemical performance was tested under magnetization and non-magnetization conditions, respectively, in a three-electrode electrochemical device. Micro-magnetic field could improve the electric double-layer capacitance, reduce the charge transfer resistance, and enhance the discharge performance. The capacitance enhancement of magnetized electrode was increased by 33.1% at the current density of 1 A/g, and the energy density was improved to 15.97 Wh/kg, due to the addition of magnetic particles.  相似文献   

18.
以硝酸铈铵和尿素为反应物,γ-氨丙基三乙氧基硅烷(KH550)为助剂,通过沉淀反应制得了单晶菱形CeOHCO3片状物。然后将CeOHCO3在600℃空气气氛中灼烧获得了菱形CeO2。通过XRD和SEM对反应物中是否含有KH550助剂所得的产物进行了分析,结果发现只有含有KH550才能获得菱形CeOHCO3片状物,并且在灼烧过程中产物的形貌仍保持菱形。然后采用TEM对菱形CeOHCO3和CeO2进行了表征,结果发现CeOHCO3为单晶产物而灼烧后所得的CeO2为多晶产物。  相似文献   

19.
氧化铈纳米微粒的制备及其在金属钒钝化中的应用   总被引:7,自引:0,他引:7  
用表面修饰法制备了氧化铈纳米微粒 ,并作为抗钒钝化剂的研究结果表明 ,纳米微粒浸渍到钒污染催化剂上可以钝化钒对催化剂的污染 ,改善裂化反应的产品分布。  相似文献   

20.
Advanced synthetic methods under mild and controlled conditions for the synthesis of nanocrystals with specific shapes and exposed surfaces are very important for understanding the surface related properties and to explore their structure-property relationship for various potential applications. Here, we report the synthesis of highly uniform CeO(2) nanorods and nanoflowers in large scale using non-hydrothermal homogeneous precipitation method with urea as a precipitating agent and CTAB as a shape directing agent. Uniform microstructures of CeO(2) samples were selectively synthesized using chloride and nitrate as the counter anions. The samples were characterized by thermal analysis, X-ray diffraction, N(2) adsorption-desorption isotherms, SEM, TEM, UV-Vis-DRS, and Raman spectroscopy, and temperature programmed reduction as well as desorption methods. The results show that the physicochemical and optical properties of CeO(2) samples significantly differ with their surface microstructure and morphology. They also strongly influence the redox property, oxygen storage capacity, and surface acidity of the CeO(2) samples. The CeO(2) samples with different morphologies were tested for their soot oxidation activity. The CeO(2) sample with nanorod morphology was found to be more active due to larger CeO(2)/soot interface than the CeO(2) sample with nanoflower morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号