首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A metal-organic framework nanocomposite was synthesized and applied to speciation analysis of Se(IV) and Se(VI). The sorbent is composed of MIL-101(Cr) and magnetite nanoparticles modified with dithiocarbamate. It is capably of selectively extracting Se(IV) at pH?=?1.85, while Se(VI) remains in solution. The total amount of selenium can then be determined by reducing Se(VI) to Se(IV) and also extracting it. The extraction parameters were optimized by employing design-of-experiments methodology. Selenium was then quantified by electrothermal AAS. Figures of merit include (a) a 10 ng·L?1 limit of detection, (b) a linear response in the 30 ng·L?1 to 10 μg·L?1 concentration range, and (a) a relative standard deviation of <11.5% for Se(IV). The method was validated by analyzing certified reference materials (water and tomato leaves). It was also applied to the speciation analysis of Se(IV) and Se(VI) in (spiked) water samples and of total selenium in agricultural samples.
Graphical abstract Schematic of the synthesis of a metal-organic framework nanocomposite for speciation analysis of Se(IV) and Se(VI). The sorbent is composed of MIL-101(Cr) and magnetite nanoparticles modified with dithiocarbamate. Selenium can be quantified by electrothermal AAS with a 10 ng L?1 detection limit.
  相似文献   

2.
可以通过简单地控制乙酸浓度的方法,在相似的水热合成条件下合成2种同一家族的金属有机框架材料(MOFs):MIL-88B(Cr)和MIL-101(Cr)。在相对较低的乙酸浓度下,可以得到平均粒径为100 nm的MIL-101(Cr),并拥有很高的BET比表面积(3543 m^2·g^-1)。而在相对较高的乙酸浓度下,则可得到另一种具有“呼吸”特性结构的MOF——MIL-88B(Cr)。利用粉末X射线衍射、扫描电镜、N2吸附-脱附分析、热重分析等对它们的结构、形貌、孔隙率等性质做了详细的分析。  相似文献   

3.
本文采用层层自组装法合成了具有良好水溶性的功能化磁性荧光Fe3O4/Py(芘)/PAM(聚丙烯酰胺)纳米粒子.利用其磁性,能够对该粒子进行简单有效的分离纯化,并可以对待测粒子进行富集以提高其检测灵敏度.利用Cr(VI)对该复合粒子水溶液的荧光猝灭,建立了测定Cr(VI)的荧光分析法,讨论了反应机理.在最佳实验条件下,该方法的线性区间为0.1~14.0μgmL-1,检测限为0.02μgmL-1.常见的共存离子不干扰测定,该方法可用于环境废水中Cr(VI)的测定.  相似文献   

4.
Metal–organic frameworks (MOFs) hybrid composites have recently attracted considerable attention in hydrogen storage applications. In this study a hybrid composite of zeolite templated carbon (ZTC) and Cr-based MOF (MIL-101) was synthesised by adding the templated carbon in situ during the synthesis of MIL-101(Cr). The obtained sample was fully characterized and hydrogen adsorption measurements performed at 77 K up to 1 bar. The results showed that the surface areas and the hydrogen uptake capacities of individual MIL-101 (2552 m2 g?1, 1.91 wt%) and zeolite templated carbon (2577 m2 g?1, 2.39 wt%) could be enhanced when a hybrid MIL-101(Cr)/ZTC composite (2957 m2 g?1, 2.55 wt%) was synthesized. The procedure presents a simple way for enhancement of hydrogen uptake capacity of the individual Cr-MOF and templated carbon samples.  相似文献   

5.
6.
《印度化学会志》2021,98(11):100204
Amino-functionalized magnetic MIL-101(Cr) was prepared via a one-step solvothermal method, characterized, and applied in adsorptive Sb(III) removal. The effects of solution pH, adsorbent dosage, and coexisting substances on the adsorption of Sb(III) by MIL-101(Cr)–NH2/MnFe2O4 were studied. The adsorption kinetics were analyzed using pseudo-first order, pseudo-second order, intraparticle diffusion, and Elovich models, while Freundlich and Langmuir isotherm models were used to fit the experimental data. The pseudo-second-order kinetic model provided the best fit for the kinetic data. The maximum adsorption capacity of MIL-101(Cr)–NH2/MnFe2O4 for Sb(III) was 91.07 ​mg/g, as calculated using the Langmuir adsorption isotherm model. Thermodynamic analysis revealed that the adsorption of antimony onto MIL-101(Cr)–NH2/MnFe2O4 is spontaneous and endothermic, while response surface optimization revealed that the optimal conditions for Sb(III) adsorption by MIL-101(Cr)–NH2/MnFe2O4 are an adsorbent loading of 222.55 ​mg/L, a pH of 4.5, and a temperature of 294.59 ​K. The predicted adsorption capacity of MIL-101(Cr)–NH2/MnFe2O4 for Sb(III) is only a 1.8% deviation from the actual value. Furthermore, MIL-101(Cr)–NH2/MnFe2O4 exhibits strong magnetism, allowing it to be separated from wastewater using a magnet. Finally, a preliminary economic analysis showed that the cost of treating a ton wastewater containing 25 ​mg/L antimony using this composite would be 26.24 USD. Thus, MIL-101(Cr)–NH2/MnFe2O4 is promising for treatment of Sb(III)-containing wastewater.  相似文献   

7.
This work describes a novel functionalized magnetic metal–organic framework nanocomposite [(Fe3O4‐2,5‐dimercapto‐1,3,4‐thiadiazole)/metal–organic framework] and its application in the preconcentration of Hg(II) ions. The parameters affecting the preconcentration procedure were optimized by a Box–Behnken design through response surface methodology. Three variables (uptake time, magnetic nanosorbent amount, and pH value) were selected as the main factors affecting the sorption step, while four variables (type, volume, and concentration of the eluent; and elution time) were selected as main factors in the optimization study of the elution step. Following the sorption and elution of analytes, the ions were quantified by cold vapor atomic absorption spectrometry. Under the optimum conditions, the limit of detection was 0.01 ng/mL and all the relative standard deviations were less than 10%. The obtained sorption capacity (in mg/g) of this new sorbent was 124. Ultimately, this nanocomposite was successfully applied to the rapid extraction of trace quantities of Hg(II) ions in seafood samples and satisfactory results were obtained.  相似文献   

8.
Graphene oxide (GO) is a promising two-dimensional building block for fabricating high-performance gas separation membranes. Whereas the tortuous transport pathway may increase the transport distance and lead to a low gas permeation rate, introducing spacers into GO laminates is an effective strategy to enlarge the interlayer channel for enhanced gas permeance. Herein, we propose to intercalate CO2-philic MIL-101(Cr) metal-organic framework nanocrystals into the GO laminates to construct a 2D/3D hybrid structure for gas separation. The interlayer channels were partially opened up to accelerate gas permeation. Meanwhile, the intrinsic pores of MIL-101 provided additional transport pathways, and the affinity of MIL-101 to CO2 molecules resulted in higher H2/CO2 diffusion selectivity, leading to a simultaneous enhancement in gas permeance and separation selectivity. The MIL-101(Cr)/GO membrane with optimal structures exhibited outstanding and stable mixed-gas separation performance with H2 permeance of 67.5 GPU and H2/CO2 selectivity of 30.3 during the 120-h continuous test, demonstrating its potential in H2 purification application.  相似文献   

9.
采用实验与分子模拟结合的方法研究298 K下CO2在氨基改性得到的MIL-101(Cr)-NH2和MIL-101(Cr)-ED(ED:乙二胺)上的吸附性能。比较MIL-101(Cr)、MIL-101(Cr)-NH2和MIL-101(Cr)-ED的吸附等温线与吸附热的结果,表明采用直接合成改性法得到的MIL-101(Cr)-NH2比采用合成后再改性得到的MIL-101(Cr)-ED有更高的CO2吸附容量。进一步比较密度分布图和径向密度分布曲线,分析CO2在氨基改性MIL-101(Cr)中的吸附位,表明在低压下CO2首先吸附在MIL-101(Cr)微孔的超级四面体中,随着吸附压力的增大逐渐填充到更大的孔中。氨基的存在增加了CO2的吸附位点,使MIL-101(Cr)-NH2具有较高CO2吸附容量;同时MIL-101(Cr)-ED中的ED分子的存在增加了CO2的吸附位点,使MIL-101(Cr)-ED也具有较高CO2吸附容量;但是MIL-101(Cr)-ED中的ED分子占据了MIL-101(Cr)中Cr的吸附位点,使Cr对CO2的吸附强度减弱,同时可吸附位点少于MIL-101(Cr)-NH2,导致其对CO2的吸附容量少于MIL-101(Cr)-NH2。  相似文献   

10.
采用实验与分子模拟结合的方法研究298 K下CO_2在氨基改性得到的MIL-101(Cr)-NH_2和MIL-101(Cr)-ED(ED:乙二胺)上的吸附性能。比较MIL-101(Cr)、MIL-101(Cr)-NH_2和MIL-101(Cr)-ED的吸附等温线与吸附热的结果,表明采用直接合成改性法得到的MIL-101(Cr)-NH_2比采用合成后再改性得到的MIL-101(Cr)-ED有更高的CO_2吸附容量。进一步比较密度分布图和径向密度分布曲线,分析CO_2在氨基改性MIL-101(Cr)中的吸附位,表明在低压下CO_2首先吸附在MIL-101(Cr)微孔的超级四面体中,随着吸附压力的增大逐渐填充到更大的孔中。氨基的存在增加了CO_2的吸附位点,使MIL-101(Cr)-NH_2具有较高CO_2吸附容量;同时MIL-101(Cr)-ED中的ED分子的存在增加了CO_2的吸附位点,使MIL-101(Cr)-ED也具有较高CO_2吸附容量;但是MIL-101(Cr)-ED中的ED分子占据了MIL-101(Cr)中Cr的吸附位点,使Cr对CO_2的吸附强度减弱,同时可吸附位点少于MIL-101(Cr)-NH_2,导致其对CO_2的吸附容量少于MIL-101(Cr)-NH_2。  相似文献   

11.
12.
Metal-organic frameworks (MOFs) have received great attention as novel sorbents due to their fascinating structures and intriguing potential applications in various fields. In this work, a MIL-101(Cr)-coated solid-phase microextraction (SPME) fiber was fabricated by a simple direct coating method and applied to the determination of volatile compounds (BTEX, benzene, toluene, ethylbenzene, m-xylene and o-xylene) and semi-volatile compounds (PAHs, polycyclic aromatic hydrocarbons) from water samples. The extraction and desorption conditions of headspace SPME (HS-SPME) were optimized. Under the optimized conditions, the established methods exhibited excellent extraction performance. Good precision (<7.7%) and low detection limits (0.32–1.7 ng L−1 and 0.12–2.1 ng L−1 for BTEX and PAHs, respectively) were achieved. In addition, the MIL-101(Cr)-coated fiber possessed good thermal stability, and the fiber can be reused over 150 times. The fiber was successfully applied to the analysis of BTEX and PAHs in river water by coupling with gas chromatography–mass spectrometry (GC–MS). The analytes at low concentrations (1.7 and 10 ng L−1) were detected, and the recoveries obtained with the spiked river water samples were in the range of 80.0–113% and 84.8–106% for BTEX and PAHs, respectively, which demonstrated the applicability of the self-made fiber.  相似文献   

13.
采用简单易行的浸渍法将Pt纳米粒子负载到MIL-101(Cr)上, 制备了Pt/MIL-101(Cr)催化剂, 并对其在肉桂醛选择性加氢反应的催化性能进行了研究。XRD、N2吸附、TEM和催化性能的研究结果表明, Pt的负载量对负载于MIL-101(Cr)上Pt纳米粒子的尺寸及所制备催化剂对肉桂醇的选择性有很大影响。低Pt负载量(1.0wt%)的Pt/MIL-101(Cr)较其他MOFs和无机材料在肉桂醛选择性加氢反应中表现出了高的催化性能, 在优化的反应条件下肉桂醛转化率和对肉桂醇的选择性可分别达96.5%和86.2%。Pt/MIL-101(Cr)催化剂具有良好的稳定性。Pt/MIL-101(Cr)所表现出的优良的催化性能同MIL-101(Cr)载体的孔道结构及其表面性质密切相关。  相似文献   

14.
采用简单易行的浸渍法将Pt纳米粒子负载到MIL-101(Cr)上,制备了Pt/MIL-101(Cr)催化剂,并对其在肉桂醛选择性加氢反应的催化性能进行了研究。XRD、N2吸附、TEM和催化性能的研究结果表明,Pt的负载量对负载于MIL-101(Cr)上Pt纳米粒子的尺寸及所制备催化剂对肉桂醇的选择性有很大影响。低Pt负载量(1.0%)的Pt/MIL-101(Cr)较其他MOFs和无机材料在肉桂醛选择性加氢反应中表现出了高的催化性能,在优化的反应条件下肉桂醛转化率和对肉桂醇的选择性可分别达96.5%和86.2%。Pt/MIL-101(Cr)催化剂具有良好的稳定性。Pt/MIL-101(Cr)所表现出的优良的催化性能同MIL-101(Cr)载体的孔道结构及其表面性质密切相关。  相似文献   

15.
Saboori  Ali 《Mikrochimica acta》2017,184(5):1509-1516
Microchimica Acta - The article describes a magnetic metal-organic framework (MOF) of the type MIL-101(Fe)/2-(propylamino-ethyl) dithiocarbamate on the surface of magnetite nanoparticles. The MOF...  相似文献   

16.
In this work, a magnetic octahedral metal-organic framework (Fe3O4@NH2-MIL-101(Fe)) was synthesized for the magnetic solid-phase extraction of three anthraquinones, including aloe-emodin, emodin, and physcion, in rhubarb. The Fe3O4@NH2-MIL-101(Fe) exhibits a high specific surface area of 259.2 m2/g with an average pore size of 6.0 nm and high magnetic responsivity of 23.4 emu/g, which may be used as an adsorbent for rapid preconcentration and separation of target analytes. The main parameters for magnetic solid-phase extraction of anthraquinones, including the amount of adsorbent, extraction time, extraction temperature, extraction pH, elution solvent, and elution time, were systematically optimized. The whole extraction process requires a very low amount of adsorbent and a small volume of the sample. Besides, under the optimized conditions, the method shows satisfactory spiked recovery for anthraquinones in the range of 93.3–109.1% and the limits of detection are 1.7–3.4 ng/mL. The relative standard deviations for intra- and inter-day precision are 0.2–1.3% and 0.2–0.6%, respectively. The experimental results indicate that the developed method is feasible for the analysis of anthraquinones in rhubarb.  相似文献   

17.
Effectively reducing the concentration of nitrogen-containing compounds (NCCs) remains a significant but challenging task in environmental restoration. In this work, a novel step-scheme (S-scheme) SnO2@MCr heterojunction was successfully fabricated via a facile hydrothermal method. At this heterojunction, MIL-101(Cr) octahedrons are decorated with highly dispersed SnO2 quantum dots (QDs, approximate size 3 nm). The QDs are evenly wrapped around the MIL-101(Cr), forming an intriguing zero-dimensional/three-dimensional (0D/3D) S-scheme heterostructure. Under simulated sunlight irradiation (280 nm < λ < 980 nm), SnO2@MCr demonstrated superior photoactivity toward the denitrification of pyridine, a typical NCC. The adsorption capacity and adsorption site of SnO2@MCr were also investigated. Tests using 20%SnO2@MCr exhibited much higher activity than that of pure SnO2 and MIL-101(Cr); the reduction ratio of Cr(VI) is rapidly increased to 95% after sunlight irradiation for 4 h. The improvement in the photocatalytic activity is attributed to (i) the high dispersion of SnO2 QDs, (ii) the binding of the rich adsorption sites with pyridine molecules, and (iii) the formation of the S-scheme heterojunction between SnO2 and MIL-101(Cr). Finally, the photocatalytic mechanism of pyridine was elucidated, and the possible intermediate products and degradation pathways were discussed.  相似文献   

18.
In this work for the first time, Fe3O4@SiO2 core–shell nanoparticles functionalized with isatin groups as a magnetic nanosorbent was applied for the simultaneous extraction of trace amounts of cadmium(II), nickel(II), lead(II), and zinc(II). The characterization of this nanosorbent was studied using Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction, vibrating sample magnetometer and thermogravimetric analysis. The effect of several factors such as pH, amount of sorbent, extraction time, type and volume of the eluent, sample volume, sorption capacity, and potentially interfering ions was investigated. In the selected conditions, it was observed that the limits of detection were 0.11 ng mL?1 for Cd(II), 0.28 ng mL?1 for Ni(II), 0.47 ng mL?1 for Pb(II), and 0.21 ng mL?1 for Zn(II), and the maximum sorption capacity of this suggested magnetic nanosorbent was 120, 112, 100, and 100 mg g?1 for Cd(II), Ni(II), Pb(II), and Zn(II), respectively. Also, the precision of the method (RSD%) for ten replicate measurements was found 2.5, 2.5, 2.8, and 3.1%, for Cd(II), Ni(II), Pb(II), and Zn(II) ions, respectively. Finally, the suggested procedure was applied for determination of cadmium(II), nickel(II), lead(II), and zinc(II) at trace levels in different water and agricultural products with satisfactory results.  相似文献   

19.
The authors describe a highly chemiluminescent metal-organic framework (MOF) that was obtained by loading the pores of MIL-101(Cr) with luminol. Immobilization is based on Lewis acid-base interactions between the coordinatively unsaturated metal sites of MIL-101(Cr) and the amino groups of luminol. The luminol-loaded MOF displays strong chemiluminescence (CL) in the presence of hydrogen peroxide (H2O2) in alkaline solution. Pyrophosphate (PPi), in turn, acts as a quencher of this CL. These findings have been exploited in the design of a CL based method for the determination of either H2O2 or PPi. The assays for H2O2 works in the 3 to 100 μM concentration range and has a detection limit of 0.5 μM. The quenchometric assay for PPi works in the 5 to 70 μM concentration range and has a 1.2 μM detection limit.
Graphical abstract Luminol-embedded metal-organic frameworks (MOFs) with high chemiluminescent activity were prepared and used for the sensitive determination of either H2O2 or pyrophosphate ions.
  相似文献   

20.
The tandem oxidative three-component synthesis of two types of the heterocycles such as furans and imidazopyridines, via isocyanides [1+4] cycloaddition reactions in the presence of MIL-101(Cr) under aerobic conditions are reported. When the 4-toluenesulfonylmethyl isocyanide was used, an unexpected [3+2] cycloaddition reaction of isocyanides with aldehydes accomplished and dihydrophenyloxazoles and phenyloxazoles produced. These syntheses were successfully carried out using a wide scope of the substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号