首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cu(2)O-Au nanocomposites (NCs) with tunable coverage of Au were prepared by a facile method of mixing gold nanoparticles (Au NPs) with copper(I) oxide nanowires (Cu(2)O NWs) in various ratios. These Cu(2)O-Au NCs display tunable optical properties, and their photocatalytic properties were dependent on the coverage density of Au NPs. The photocatalytic activity of Cu(2)O-Au NCs was examined by photodegradation of methylene blue. The presence of Au NPs enhanced the photodegradation efficiency of Cu(2)O NCs. The photocatalytic efficiency of Cu(2)O-Au NCs initially increased with the increasing coverage density of Au NPs and then decreased as the surface of Cu(2)O became densely covered by Au NPs. The enhanced photocatalytic efficiency was ascribed to enhanced light absorption (by the surface plasmon resonance) and the electron sink effect of the Au NPs.  相似文献   

2.
The Cu2O/SiC photocatalyst was obtained from SiC nanoparticles (NPs) modified by Cu2O. Their photocatalytic activities for reducing CO2 to CH3OH under visible light irradiation have been investigated. The results indicated that besides a small quantity of 6H-SiC, SiC NPs mainly consisted of 3C-SiC. The band gaps of SiC and Cu2O were estimated to be about 1.95 and 2.23 eV from UV-Vis spectra, respectively. The Cu2O modification can enhance the photocatalytic performance of SiC NPs, and the largest yields of methanol on SiC, Cu2O and Cu2O/SiC photocatalysts under visible light irradiation were 153, 104 and 191μmol/g, respectively.  相似文献   

3.
A Cu(111) surface displays a low activity for the oxidation of carbon monoxide (2CO + O(2) → 2CO(2)). Depending on the temperature, background pressure of O(2), and the exposure time, one can get chemisorbed O on Cu(111) or a layer of Cu(2)O that may be deficient in oxygen. The addition of ceria nanoparticles (NPs) to Cu(111) substantially enhances interactions with the O(2) molecule and facilitates the oxidation of the copper substrate. In images of scanning tunneling microscopy, ceria NPs exhibit two overlapping honeycomb-type moire? structures, with the larger ones (H(1)) having a periodicity of 4.2 nm and the smaller ones (H(2)) having a periodicity of 1.20 nm. After annealing CeO(2)/Cu(111) in O(2) at elevated temperatures (600-700 K), a new phase of a Cu(2)O(1+x) surface oxide appears and propagates from the ceria NPs. The ceria is not only active for O(2) dissociation, but provides a much faster channel for oxidation than the step edges of Cu(111). Exposure to CO at 550-750 K led to a partial reduction of the ceria NPs and the removal of the copper oxide layer. The CeO(x)/Cu(111) systems have activities for the 2CO + O(2) → 2CO(2) reaction that are comparable or larger than those reported for surfaces of expensive noble metals such as Rh(111), Pd(110), and Pt(100). Density-functional calculations show that the supported ceria NPs are able to catalyze the oxidation of CO due to their special electronic and chemical properties. The configuration of the inverse oxide/metal catalyst opens new interesting routes for applications in catalysis.  相似文献   

4.
A copper metal–organic framework nanoparticles (Cu‐MOF‐NPs) synthesized via simple technique. The prepared Cu‐MOF‐NPs nanoparticles were further characterized using 1H‐NMR, FE‐SEM/EDX and thermal study (DSC/TGA). The FE‐SEM/EDX, thermal analysis, and NMR spectrum data with the other analysis support the nano‐Cu‐MOF structure and the monomeric unit (n[Cu (AIP)2(APY)(H2O)2].4H2O) of Cu‐MOF‐NPs. The photoluminescence (PL) studies of triiodothyronine hormone (T3) based on the prepared Cu‐MOF‐NPs investigated. The results revealed that the Cu‐MOF‐NPs might be used as a biosensor in the determination of triiodothyronine hormone (T3) in biological fluids through a significant quenching of the photoluminescence intensity of Cu‐MOF‐NPs at excitation wavelength 492 nm. The calibration plot achieved over the concentration range 0.0–200.0 ng/dL T3 hormone with a correlation coefficient 0.996 and limit of detection (LOD) and quantification (LOQ) 0.198 and 0.60 ng/dL, respectively. The PL spectra are indicating that Cu‐MOF‐NPs has highly selective sensing properties for T3 hormone without interfering with other human many hormones types. This approach considered a promising analytical tool for early diagnosis of the cases of thyroid disease. The mechanism of quenching between the Cu‐MOF‐NPs, and T3 hormone studied. The mechanism was a dynamic type and obtained due to the energy transfer mechanism.  相似文献   

5.
In this paper a novel simple method for preparing two different catalysts with various‐valences copper was reported. Carbon nanofibers supported copper‐cuprous oxide nanoparticles (Cu‐Cu2O NPs/CNFs) and copper oxide nanoparticles (CuO NPs/CNFs) through electrospinning, adsorption and reduction in the high‐pressure hydrogenation and the high‐temperature calcination methods. These catalysts were investigated by a series of characterizations and were applied in reaction in nitrogen atmosphere, which had a good catalytic activity and selectivity of benzaldehyde for the reaction. Above all, the new study has been certified clearly, in which Cu‐Cu2O NPs/CNFs and CuO NPs/CNFs composite catalysts enhanced the generation of benzaldehydeand the excellent catalytic properties were exhibited.  相似文献   

6.
The selective growth of Au nanoparticles on (111) facets of truncated octahedral and cuboctahedral Cu(2)O crystals has been achieved by exploiting the differences in the standard potential between AuCl(4)(-)/Au and Cu(2+)/Cu(2)O pairs and in surface energies between (111) and (100) planes. The density and size of Au nanoparticles can be controlled by tuning the concentration of the gold precursor. Truncated octahedral Cu(2)O-Au nanocomposites have a 10 times higher electrochemically catalytic activity toward H(2)O(2) reduction than do pure Cu(2)O crystals. The enhanced catalysis may be derived from the polarization of Au NPs at the interface, which makes Cu(2)O more active for H(2)O(2) reduction.  相似文献   

7.
In the present paper a pure phase of the copper chromite spinel nanoparticles (CuCr2O4 SNPs) were synthesized via the sol–gel route using citric acid as a complexing agent. Then, the CuCr2O4 SNPs has been characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In the next step, with the addition of Cu–Cr–O nanoparticles (NPs), the effects of different parameters such as Cu–Cr–O particle size and the Cu/Cr molar ratios on the thermal behavior of Cu–Cr–O NPs + AP (ammonium perchlorate) mixtures were investigated. As such, the catalytic effect of the Cu–Cr–O NPs for thermal decomposition of AP was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA/DSC results showed that the samples with different morphologies exhibited different catalytic activity in different stages of thermal decomposition of AP. Also, in the presence of Cu–Cr–O nanocatalysts, all of the exothermic peaks of AP shifted to a lower temperature, indicating the thermal decomposition of AP was enhanced. Moreover, the heat released (ΔH) in the presence of Cu–Cr–O nanocatalysts was increased to 1490 J g−1.  相似文献   

8.
《中国化学会会志》2017,64(6):607-611
Copper nanoparticles (Cu NPs ) coated with polystyrene (PS ) (Cu NPs @PS ) were prepared by precipitation polymerization. First, Cu NPs were prepared by chemical reduction using cupric acetate as precursor, sodium polyacrylate (PAANa ) as stabilizer, and hydrazine hydrate as reducing agent. Then Cu NPs were coated by precipitation polymerization using styrene as monomer, 3‐(trimethoxysilyl) propyl acrylate as co‐monomer, and 2, 2‐azobisisobutyronitrile (AIBN ) as initiator. Ultraviolet–visible (UV –vis) spectroscopy and transmission electron microscopy (TEM ) results showed that stable composite particles could be synthesized by precipitation polymerization. The amount of PAANa had a significant effect on the size of Cu NPs . The addition of more PAANa resulted in smaller Cu NPs . The spherical Cu NPs became nanowires when increasing the stirring rate from 350 to 700 rpm during precipitation polymerization. Ag NPs @PS with core–shell structure were also prepared by this method, which appears to be universal.  相似文献   

9.
以Al(NO_3)_3·9H_2O和AgNO_3为原料,采用水热法制备了介孔氧化铝纳米粒子(Mesoporous Al_2O_3NPs)和银掺杂介孔氧化铝纳米粒子(Mesoporous Ag/Al_2O_3NPs),通过X射线衍射(XRD)、场发射扫描电子显微镜(FE-SEM)、X射线荧光光谱(XRF)、能量分散X射线衍射(EDX)和低温N2吸附-脱附等手段对产物进行了表征,通过最低抑菌浓度和抑菌圈实验研究了材料的抗菌性能.XRD分析表明在介孔Ag/Al_2O_3NPs中Al_2O_3是唯一结晶相,Ag掺杂后,介孔Ag/Al_2O_3NPs晶格常数和半高峰宽增大,晶面间距[(111),(400)和(440)面]减小.FE-SEM形貌分析表明掺杂后的介孔Ag/Al_2O_3NPs颗粒直径减小而孔径增大.EDX和XRF分析表明介孔Ag/Al_2O_3NPs中O/Al摩尔比为1.5,与Al_2O_3NPs中O/Al摩尔比相同.综合XRD和XRF分析结果认为,Ag进入介孔Al_2O_3晶格间隙形成间隙固溶体.低温N2吸附-脱附分析表明掺杂后的介孔Ag/Al_2O_3NPs比表面积、孔体积和孔径增大.曝气抗菌实验结果表明介孔Ag/Al_2O_3NPs的抗菌机理是活性氧和金属银的协同作用.介孔Ag/Al_2O_3NPs对革兰氏阴性菌(大肠杆菌)和革兰氏阳性菌(金黄色葡萄球菌)具有明显的抗菌效果,对大肠杆菌和金黄色葡萄球菌的最低抑菌浓度(MIC)均为80μg/m L,抑菌圈直径分别为26 mm和24 mm.  相似文献   

10.
A uric acid (UA) electrochemical biosensor based on the Cu‐Au alloy nanoparticles (NPs) and uricase was developed. The electrodeposition technique of Cu‐Au alloy NPs was selected to be a convenient potentiostatic method at –0.8 V in a single solution containing both Au(III) and Cu2+. Cyclic voltammetry and scanning electron microscopy proved the successful deposition of Cu‐Au alloy NPs. EIS demonstrated the good conductivity of Cu‐Au alloy NPs. The enzyme was immobilized on the surface of Cu‐Au alloy NPs modified electrode by casting with chitosan solution. The ultimate biosensor showed linear amperometric response towards UA in the concentration range of 3.0 to 26.0 μM with a detection limit of 0.8 μM. The main feature of the biosensor was its short response time, which was attributed to the good conductivity of Cu‐Au alloy NPs. Furthermore, the biosensor could avoid the interference of ascorbic acid and oxygen.  相似文献   

11.
Lee YF  Deng TW  Chiu WJ  Wei TY  Roy P  Huang CC 《The Analyst》2012,137(8):1800-1806
We have developed a simple, low-cost, paper-based probe for the selective colorimetric detection of copper ions (Cu(2+)) in aqueous solutions. The bovine serum albumin (BSA)-modified 13.3-nm Au nanoparticle (BSA-Au NP) probe was designed to detect Cu(2+) ions using lead ions (Pb(2+)) and 2-mercaptoethanol (2-ME) as leaching agents in a glycine-NaOH (pH 12.0) solution. In addition, a nitrocellulose membrane (NCM) was used to trap the BSA-Au NPs, leading to the preparation of a nanocomposite film consisting of a BSA-Au NP-decorated membrane (BSA-Au NPs/NCM). The BSA-Au NPs probe operates on the principle that Cu deposition on the surface of the BSA-Au NPs inhibits their leaching ability, which is accelerated by Pb(2+) ions in the presence of 2-ME. Under optimal solution conditions (5 mM glycine-NaOH (pH 12.0), Pb(2+) (50 μM), and 2-ME (1.0 M)), the Pb(2+)/2-ME-BSA-Au NPs/NCM enabled the detection of Cu(2+) at nanomolar concentrations in aqueous solutions by the naked eye with high selectivity (at least 100-fold over other metal ions). In addition, this cost-effective probe allowed for the rapid and simple determination of Cu(2+) ions in not only natural water samples but also in a complex biological sample (in this case, blood sample).  相似文献   

12.
Oxide-derived Cu (OD−Cu) featured with surface located sub-20 nm nanoparticles (NPs) created via surface structure reconstruction was developed for electrochemical CO2 reduction (ECO2RR). With surface adsorbed hydroxyls (OHad) identified during ECO2RR, it is realized that OHad, sterically confined and adsorbed at OD−Cu by surface located sub-20 nm NPs, should be determinative to the multi-carbon (C2) product selectivity. In situ spectral investigations and theoretical calculations reveal that OHad favors the adsorption of low-frequency *CO with weak C≡O bonds and strengthens the *CO binding at OD−Cu surface, promoting *CO dimerization and then selective C2 production. However, excessive OHad would inhibit selective C2 production by occupying active sites and facilitating competitive H2 evolution. In a flow cell, stable C2 production with high selectivity of ∼60 % at −200 mA cm−2 could be achieved over OD−Cu, with adsorption of OHad well steered in the fast flowing electrolyte.  相似文献   

13.
14.
Highly-dispersed copper nanoparticles (Cu NPs) were fabricated on the surface of reduced graphene oxide via direct hydrazine hydrate reduction of Cu2+ in aqueous solution. Scanning electron microscope and transmission electron microscope images show that the Cu NPs are distributed on the surface of graphene nanosheets, and the average particle size was about 40 nm. The Cu NPs supported on graphene have high reaction activity for the oxidation of toluene to corresponding benzaldehyde. It was found that the selectivity reached 66.5% and the conversion of toluene reached 11.5%.  相似文献   

15.
Fan Y  Huang Y 《The Analyst》2012,137(5):1225-1231
Here, we report a highly simple and general protocol for functionalization of the CoFe(2)O(4) NPs with chitosan polymers in order to make CoFe(2)O(4) NPs disperse and stable in solution. The functionalized CoFe(2)O(4) NPs (denoted as CF-CoFe(2)O(4) NPs) were characterized by scanning electron microscope (SEM), thermogravimetric (TG), X-ray diffraction (XRD) and FT-IR spectra. It was found that the CoFe(2)O(4) NPs were successfully decorated and uniformly dispersed on the surface of chitosan without agglomeration. The CF-CoFe(2)O(4) NPs were found to increase greatly the radiation emitted during the CL oxidation of luminol by hydrogen peroxide. Results of ESR spin-trapping experiments demonstrated that the CF-CoFe(2)O(4) NPs showed catalytic ability to H(2)O(2) decomposition into ˙OH radicals. On this basis, a highly sensitive and rapid chemiluminescent method was developed for hydrogen peroxide in water samples and glucose in blood samples. Under optimum conditions, the proposed method allowed the detection of H(2)O(2) in the range of 1.0 × 10(-9) to 4.0 × 10(-6) M and glucose in the range of 5.0 × 10(-8) to 1.0 × 10(-5) M with detectable H(2)O(2) as low as 500 pM and glucose as low as 10 nM, respectively. This proposed method has been successfully applied to detect H(2)O(2) in environmental water samples and glucose in serum samples with good accuracy and precision.  相似文献   

16.
We demonstrate that Co(3)O(4) nanoparticles (NPs) exhibit intrinsic peroxidase-like activity and catalase-like activity. The peroxidase-like activity of the Co(3)O(4) NPs originates from their ability of electron transfer between reducing substrates and H(2)O(2), not from ˙OH radical generated. As peroxidase mimetics, Co(3)O(4) NPs were used for colorimetric determination of H(2)O(2) and glucose.  相似文献   

17.
Surfactant-free, single-nano-sized copper nanoparticles (Cu NPs) (size: about 2 nm) were prepared by the DMF reduction method. The Cu NPs showed high catalytic activity (with a turnover number (TON) of up to 2.2 × 10(4)) in Ullmann-type cross-coupling of aryl halides with phenols under ligand-free conditions.  相似文献   

18.
In this study we report the green synthesis of nontoxic and stable Cu nanoparticles (NP) using chitosan/starch hydrogel with reducing/capping ability without using any harsh reducing agents. Starch was used as a reducing agent for the synthesis of Cu NPs that was further stabilized by chitosan polymers. The in situ prepared Cu NPs/CS-Starch bio-composite were characterized by advanced physicochemical techniques like Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD), UV–Vis, TGA and Inductively Coupled Plasma-Optical Emission Spectroscopic (ICP-OES) study. It has been established that Cu NPs/CS-Starch bio-composite have a spherical shape with a mean diameter from 5 to 7 nm. Cell viability of Cu NPs/CS-Starch bio-composite was very low against common human thyroid carcinoma cell lines i.e. TPC1, BCPAP and FTC133 without any cytotoxicity on normal cell line. The best anti-human thyroid carcinoma effects of Cu NPs/CS-Starch bio-composite was observed against the TPC1 cell line. For investigating the antioxidant properties of Cu NPs/CS-Starch bio-composite, the DPPH assay was used in the presence of butylated hydroxytoluene as the positive control. Cu NPs/CS-Starch bio-composite inhibited half of the DPPH molecules in the concentration of 207 µg/mL. The antioxidant activity of Cu NPs/CS-Starch bio-composite is significantly related to its anti-human thyroid carcinoma potentials. Based on to the above findings, the Cu NPs/CS-Starch bio-composite could be administrated for the treatment of several types of human thyroid carcinoma in humans.  相似文献   

19.
Silver oxide nanoparticles (Ag2O NPs) were prepared using cantaloupe (Cucumis melo) seeds as a fuel by employing a green synthesis method. The prepared Ag2O NPs were investigated using powder X-ray diffraction (PXRD), UV–visible spectrum, Fourier transform infrared analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy-dispersive spectroscopy, and photoluminescence studies. PXRD data reveal the establishment of cubic crystal structure of Ag2O NPs. According to SEM and TEM results, the morphology of the prepared NPs was agglomerated and spherical. The photodegradation activity of the prepared Ag2O NPs over methylene blue dye was promising under visible light irradiation. Furthermore, the antimicrobial assay of the synthesized Ag2O NPs was carried out by the disc diffusion method against Gram-positive and Gram-negative microbial strains.  相似文献   

20.
本文设计了一个经济、绿色的新型方法,采用积雪草树叶提取物作为自然的还原剂,在不使用稳定剂或表面活性剂的情况下合成了MnO_2纳米粒子负载的Cu纳米颗粒(CuNPs).该合成过程环境友好,且避免使用有毒的还原剂.树叶提取物中的酚羟基将溶液中的Cu~(2+)还原为Cu NPs,后者再稳定在MnO_2 NPs表面.采用X射线衍射、透射电镜、场发射扫描电镜、能量散射谱和红外光谱对所得Cu/MnO_2纳米复合物进行了表征.结果表明,该材料可用作高活性、高效可重复使用的多相催化剂,用于室温水溶液NaBH_4存在下刚果红、罗丹明B和亚甲基蓝,以及硝基化合物,如2,4二硝基苯肼和4-硝基苯酚的催化还原.Cu/MnO_2纳米复合物的高稳定性可使其被分离出来,重复使用数次而活性无明显下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号