首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

2.
Interaction of the salt (Ph3PNPPh3)BH3CN with the various OH and NH proton donors in low polar media was studied by variable temperature (200–290 K) IR spectroscopy and theoretically by DFT calculations. The formation of two types of complexes containing non-classical dihydrogen bond to the hydride hydrogen (DHB) and classical hydrogen bond (HB) to nitrogen lone pair was shown in solution. The 1:1 complexes of both types (XHH and XHN) coexist in the presence of equimolar amount of proton donor. The addition of excess XH-acid leads to the increase of the classical HB content and appearance of the 1:2 complexes, where two basic sites work simultaneously. The structure, spectral characteristics, energy and electron redistribution were studied by DFT (B3LYP) method. The comparison DHB parameters of [BH3CN] with those of the unsubstituted analogue [BH4] allowed analyzing the electronic effects of the CN group on the basic properties of boron hydride moiety. The electronic influence of the BH3 group on CNHX hydrogen bond was also established by comparison with the corresponding classical HB to the CN anion.  相似文献   

3.
Infrared spectra of the title compounds with kröhnkite-type infinite octahedral–tetrahedral chains, K2Me(CrO4)2·2H2O (Me = Mg, Co, Ni, Zn, Cd), are presented in the regions of the uncoupled O–D stretching modes of matrix-isolated HDO molecules (isotopically dilute samples) and water librations. The strengths of the hydrogen bonds are discussed in terms of the respective OwO bond distances, the Me–water interactions (synergetic effect), the proton acceptor capability of the chromate oxygen atoms as deduced from Brown's bond valence sum of the oxygen atoms. The spectroscopic experiments reveal that hydrogen bonds of medium strength are formed in the chromates. The hydrogen bond strengths decrease in the order Cd > Zn > Ni > Co in agreement with the decreasing covalency of the respective Me–OH2 bonds in the same order, i.e. decreasing acidity of the water molecules. The infrared band positions corresponding to the water librations confirm the claim that the hydrogen bonds in K2Cd(CrO4)2·2H2O are stronger than those formed in K2Mg(CrO4)2·2H2O on one hand, and on the other—the hydrogen bonds in K2Ni(CrO4)2·2H2O are stronger than those in K2Co(CrO4)2·2H2O.  相似文献   

4.
The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000–10 cm−1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car–Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O–HO bridge is not rigid, with the OO distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.  相似文献   

5.
The heat capacity and the enthalpy increments of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (720–1370 K). Temperature dependencies of the molar heat capacity in the form Cpm = 248.0 + 0.04350T − 3.948 × 106/T2 J K−1 mol−1 for Sr2Nb2O7 and Cpm = 257.2 + 0.03621T − 4.434 × 106/T2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-square method from the experimental data. The molar entropies at 298.15 K, Sm°(298.15 K) = 238.5 ± 1.3 J K−1 mol−1 for Sr2Nb2O7 and Sm°(298.15 K) = 212.4 ± 1.2 J K−1 mol−1 for Ca2Nb2O7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

6.
The potential energy surface for the reaction of the CF3O radicals with CO was investigated. The geometries and vibrational frequencies of the reactants, transition states, intermediates, and products were calculated at the UB3LYP/6-311+G(2d,p), UB3LYP/6-311+G(3df,2p) and UMP2/6-311+G(2d,p) levels of theory. The energies were improved by using the G2M(CC2) and G3B3 methods. The calculation suggests the reaction proceeds via either the fluorine abstraction of CF3O by CO to produce FCO + CF2O with a high energy barrier or the barrierless association of the reactants to form the trans-CF3OCO intermediate. The trans-CF3OCO is predicted to undergo subsequent isomerization to cis-CF3OCO or dissociate directly to the products FCO + CF2O and CF3 + CO2. The collisional stabilization of trans-CF3OCO is dominant at room temperature, while trans-CF3OCO isomerizing to cis-CF3OCO followed by dissociating to CF3 + CO2 is accessible when temperature rises. The reason for only trans-CF3OCO without cis-CF3OCO observable in Ashen’s experiment [S.V. Ahsen, J. Hufen, H. Willner, J.S. Francisco, Chem. Eur. J. 8 (2002) 1189] is cis-CF3OCO can be produced only via the isomerization of trans-CF3OCO, and its yield is inappreciable at a low experimental temperature. The enthalpies of formation for the two conformations of CF3OCO have been deduced: (trans-CF3OCO) = −196.25 kcal mol−1, (trans-CF3OCO) = −197.46 kcal mol−1, (cis-CF3OCO) = −193.64 kcal mol−1, and (cis-CF3OCO) = −194.90 kcal mol−1.  相似文献   

7.
The structure of Ba2In2O4(OH)2 is analysed by the explicit full optimization of a large number of possible proton arrangements using periodic density functional theory. It is shown that the experimental assignments in which protons appear to be located at high symmetry positions with unphysical bond lengths do not correspond to minima on the potential energy hypersurface. The apparent sites are averages of a number of possible proton locations involving a set of possible local structural environments in which the internuclear separations are more realistic. Such problems with structural refinements are common where profile refinement programs place the atoms at the average position due to dynamic and/or static disorder. Thus while the calculations support a previous neutron diffraction analysis of the structure in that the average structure contains two different proton sites, they also reveal substantial information about the local environments of the protons. In all optimizations, the protons moved from the average positions suggested in the neutron diffraction study with calculated O–H and OHO distances consistent with those observed in other oxides. The energies of different proton distributions vary significantly so the protons are not randomly distributed. We also present an analysis of the vibrational properties of the O–H bonds. Since the strength of the hydrogen bonds is closely related to the local structural environments of the protons, a range of vibrational frequencies is obtained providing a prediction of the vibrational spectra. In O–HO linkages, O–H stretching modes soften with increasing HO hydrogen bond strength, while the in-plane and out-of-plane bending or libration modes stiffen. Together, our results show how modern theoretical methods can provide a clearer understanding of the structure and dynamics of a complex inorganic material.  相似文献   

8.
The complex [Rh(CO)2Cl]2 reacts with two molar equivalent of pyridine carboxylic acids ligands Py-2-COOH(a), Py-3-COOH(b) and Py-4-COOH(c) to yield rhodium(I) dicarbonyl chelate complex [Rh(CO)2(L/)](1a) {L/ = η2-(N,O) coordinated Py-2-COO(a/)} and non-chelate complexes [Rh(CO)2ClL//](1b,c) {L// = η1-(N) coordinated Py-3-COOH(b), Py-4-COOH(c)}. The complexes 1 undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to give penta coordinated Rh(III) complexes of the types [Rh(CO)(CORn)XL/], {n = 1,2,3; R1 = CH3(2a); R2 = C2H5(3a); X = I and R3 = CH2C6H5 (4a); X = Cl}, [Rh(CO)I2L/](5a), [Rh(CO)(CORn)ClXL//] {R1 = CH3(6b,c); R2 = C2H5(7b,c); X = I and R3 = CH2C6H5 (8b,c); X = Cl} and [Rh(CO)ClI2L//](9b,c). The complexes have been characterized by elemental analysis, IR and 1H NMR spectroscopy. Kinetic data for the reaction of 1a–b with CH3I indicate a first order reaction. The catalytic activity of 1a–c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 810–1094) is obtained compared with that of the well-known commercial species [Rh(CO)2I2] (TON = 653) at mild reaction conditions (temperature 130 ± 5 °C, pressure 35 ± 5 bar).  相似文献   

9.
Conductivities of some tetraalkylammonium halides, viz. tetrapentylammonium chloride (Pen4NCl), tetrahexylammonium chloride (Hex4NCl), tetraheptylammonium chloride (Hep4NCl), and tetraoctylammonium chloride (Oct4NCl) were measured at 298.15 K in THF + CCl4 mixtures with 40, 60 and 80 mass% of THF. A minimum in the conductometric curves (molar conductance, Λ vs. square root of concentration, √c) was observed at concentrations which is dependent both on the salt and the solvent. The observed molar conductivities were explained by the formation of ion-pairs (M+ + X ↔ MX, KP) and triple-ions (2M+ + X ↔ M2X+; M+ + 2X ↔ MX2, KT). A linear relationship between the triple-ion formation constants [log(KT/KP)] and the salt concentrations at the minimum conductivity (log Cmin) was given for all salts in THF + CCl4 mixtures. The formation of triple-ions might be attributed to the ion sizes in solutions in which coulombic interactions and covalent bonding forces act as the main forces between the ions (R4N+X).  相似文献   

10.
The conformational isomerism of 2-chlorocyclopentanone and 2-bromocyclopentanone has been determined through the solvent dependence of the 1H NMR 3JHH coupling constants, theoretical calculations and infrared data, using the solvation theory for the treatment of NMR data. In 2-chlorocyclopentanone, the energy difference (EΨ-e − EΨ-a), in the isolated molecule at B3LYP level of theory, between the pseudo-equatorial (Ψ-e) and pseudo-axial (Ψ-a) conformers is 0.42 kcal mol−1, which decreases in CCl4 and in acetonitrile solutions, in good agreement with infrared data (νCO), despite the uncertainties of the latter method. The conformational equilibrium for 2-bromocyclopentanone is also between the Ψ-e and Ψ-a conformations, with an energy difference (EΨ-e − EΨ-a), in the isolated molecule at B3LYP level of theory, is 0.85 kcal mol−1 which decreases in CCl4 and in acetonitrile solutions, also in good agreement with infrared data.  相似文献   

11.
A synthetic method for the fabrication of silica-based mesoporous magnetic (Fe or iron oxide spinel) nanocomposites with enhanced adsorption and magnetic capabilities is presented. The successful in situ synthesis of magnetic nanoparticles is a consequence of the incorporation of a small amount of carbon into the pores of the silica, this step being essential for the generation of relatively large iron oxide magnetic nanocrystals (10 ± 3 nm) and for the formation of iron nanoparticles. These composites combine good magnetic properties (superparamagnetic behaviour in the case of SiO2–C–Fe3O4/γ–Fe2O3 samples) with a large and accessible porosity made up of wide mesopores (>9 nm). In the present work, we have demonstrated the usefulness of this kind of composite for the adsorption of a globular protein (hemoglobin). The results obtained show that a significant amount of hemoglobin can be immobilized within the pores of these materials (up to 180 mg g−1 for some of the samples). Moreover, we have proved that the composite loaded with hemoglobin can be easily manipulated by means of an external magnetic field.  相似文献   

12.
We report that glass–ceramic Li2S–P2S5 electrolytes can be prepared by a single step ball milling (SSBM) process. Mechanical ball milling of the xLi2S·(100 − x)P2S5 system at 55 °C produced crystalline glass–ceramic materials exhibiting high Li-ion conductivity over 10−3 S cm−1 at room temperature with a wide electrochemical stability window of 5 V. Silicon nanoparticles were evaluated as anode material in a solid-state Li battery employing the glass–ceramic electrolyte produced by the SSBM process and showed outstanding cycling stability.  相似文献   

13.
With replacement of N atoms by CH groups in the most stable chain isomer of N8H8, 34 possible isomers of Nn(CH)8−nH8 (n = 0–7) have been designed and optimized at the B3LYP/6-311++G** level of theory. The natural bond orbital (NBO) and atoms in molecules (AIM) analysis are carried out to study the bonding nature and relative stabilities of these conformers. G3MP2 method is applied to calculate energies and heats of formation. The results indicate that the hyperconjugation effect from lone pairs of nitrogen atoms to germinal C–N bonds is the major factor which caused the change of the C–N bond length. With the more replacement of nitrogen atoms by CH groups, the heats of formation of the isomers of Nn(CH)8−nH8 (n = 0–7) decrease gradually, but the energies increase linearly.  相似文献   

14.
Excitation spectra of Na fluorescence in mixtures with CF4 display a new band shifted by the energy of one-vibrational quantum of the IR active ν3-mode of CF4 (1281 cm−1) from Na 3d states. This band is attributed to a Na(3s)CF4(ν3 = 0) → Na(3d)CF4(ν3 = 1) transition and its intensity is explained by coupling with Na(4p)CF4(v3 = 0) resonance state which lies  180 cm−1 below in energy. An analogous satellite of the Na 6p state combined with the same vibration and lying close to the Na 7p state is reported and discussed.  相似文献   

15.
The structure, stability, and thermochemistry of the H(MF3)+ isomers (M = N-Bi) have been investigated by MP2 and coupled cluster calculations. All the HF-MF2+ revealed weakly bound ion-dipole complexes between MF2+ and HF. For M = N, As, Sb, and Bi they are more stable than the H-MF3+ covalent structures (free energy differences) by 6.3, 14.3, 32.1, and 73.5 kcal mol−1, respectively. H-PF3+ is instead more stable than HF-PF2+ by 21.8 kcal mol−1. The proton affinities (PAs) of MF3 at the M atom range from 91.9 kcal mol−1 (M = Bi) to 156.5 kcal mol−1 (M = P), and follow the irregular periodic trend BiF3 < SbF3 < AsF3 < NF3 < PF3. The PAs at the F atom range instead from 131.9 kcal mol−1 (M = P) to 164.9 kcal mol−1 (M = Bi), and increase in the more regular order PF3 ≈ NF3 < AsF3 < SbF3 < BiF3. This trend parallels the fluoride-ion affinities of the MF2+ cations. For protonated NF3 and PF3, the calculations are in good agreement with the available experimental results. As for protonated AsF3, they support the formation of HF-AsF2+ rather than the previously proposed H-AsF3+. The calculations indicate also that the still elusive H(SbF3)+ and H(BiF3)+ should be viable species in the gas phase, exothermically obtainable by various protonating agents.  相似文献   

16.
The non-isothermal crystallization of α-Fe from Fe81B13Si4C2 amorphous alloy was investigated. The kinetic parameters of crystallization process were determined by Kissinger and Kissinger–Akahira–Sunose (KAS) methods. It was established that the kinetic parameters of transformation do not change with the degree of crystallization in the range of 0.1–0.7. The kinetic model of the crystallization process was determined using the Malek's procedure. It was established that the primary crystallization α-Fe phase from amorphous alloy can be described by Šesták–Berggren autocatalytic model with kinetic triplet Ea = 349.4.0 kJ mol−1, ln A = 50.76 and f(α) = α0.72(1 − α)1.02.  相似文献   

17.
Density functional B3LYP method with 6-31++G** basis set is applied to optimize the geometries of the luteolin, water and luteolin–(H2O)n complexes. The vibrational frequencies are also studied at the same level to analyze these complexes. We obtained four steady luteolin–H2O, nine steady luteolin–(H2O)2 and ten steady luteolin–(H2O)3, respectively. Theories of atoms in molecules (AIM) and natural bond orbital (NBO) are used to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes corrected by basis set superposition error, are within −13.7 to −82.5 kJ/mol. The strong hydrogen bonding mainly contribute to the interaction energies, Natural bond orbital analysis is performed to reveal the origin of the interaction. All calculations also indicate that there are strong hydrogen bonding interactions in luteolin–(H2O)n complexes. The OH stretching modes of complexes are red-shifted relative to those of the monomer.  相似文献   

18.
Quantum chemical calculations at the B3LYP/TZVP level of theory have been carried out for the initial steps of the addition reaction of ethylene to OsO3(CH2). The calculations predict that there are two reaction channels with low activation barriers. The kinetically and thermodynamically most favored reaction is the [3+2]O, C addition which has a barrier of only 2.3 kcal mol−1. The [3+2]O, O addition has a slightly higher barrier of 6.5 kcal mol−1. Four other reactions of OsO3(CH2) with C2H4 have significantly larger activation barriers. The addition of ethylene to one oxo group with concomitant migration of one hydrogen atom from ethylene to the methylene ligand yields thermodynamically stable products but the activation energies for the reactions are 16.7 and 20.9 kcal mol−1. Even higher barriers are calculated for the [2+2] addition to the OsO bond (32.6 kcal mol−1) and for the addition to the oxygen atom yielding an oxiran complex (41.2 kcal mol−1). The activation barriers for the rearrangement to the bisoxoosmaoxirane isomer (36.3 kcal mol−1) and for the addition reactions of the latter with C2H4 are also quite high. The most favorable reactions of the cyclic isomer are the slightly exothermic [2+2] addition across the OsO bond which has an activation barrier of 46.6 kcal mol−1 and the [3+2]O, O addition which is an endothermic process with an activation barrier of 44.3 kcal mol−1.  相似文献   

19.
The kinetics of the reaction of the CH3CHBr, CHBr2 or CDBr2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3CHBr (or CHBr2 or CDBr2) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH3CHBr2 (or CHBr3 or CDBr3). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH3CHBr + HBr) and from 288 to 477 K (CHBr2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student’s t values, units in cm3 molecule−1 s−1, no error limits for the third reaction): k(CH3CHBr + HBr) = (1.7 ± 1.2) × 10−13 exp[+ (5.1 ± 1.9) kJ mol−1/RT], k(CHBr2 + HBr) = (2.5 ± 1.2) × 10−13 exp[−(4.04 ± 1.14) kJ mol−1/RT] and k(CDBr2 + HBr) = 1.6 × 10−13 exp(−2.1 kJ mol−1/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH3CHBr and CHBr2 radicals and an experimental entropy value at 298 K for the CH3CHBr radical were obtained using a second-law method. The result for the entropy value for the CH3CHBr radical is 305 ± 9 J K−1 mol−1. The results for the enthalpy of formation values at 298 K are (in kJ mol−1): 133.4 ± 3.4 (CH3CHBr) and 199.1 ± 2.7 (CHBr2), and for α-C–H bond dissociation energies of analogous compounds are (in kJ mol−1): 415.0 ± 2.7 (CH3CH2Br) and 412.6 ± 2.7 (CH2Br2), respectively.  相似文献   

20.
The adsorption of Saccharomyces cerevisiae mandelated dehydrogenase (SCMD) protein on the surface-modified magnetic nanoparticles coated with chitosan was studied in a batch adsorption system. Functionalization of surface-modified magnetic particles was performed by the covalent binding of chitosan onto the surface of magnetic Fe3O4 nanoparticles. Characterization of these particles was carried out using FTIR spectra, transmission electron micrography (TEM), X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Magnetic measurement revealed that the magnetic Fe3O4–chitosan nanoparticles were superparamagnetic and the saturation magnetization was about 37.3 emu g−1. The adsorption capacities and rates of SCMD protein onto the magnetic Fe3O4–chitosan nanoparticles were evaluated. The adsorption capacity was influenced by pH, and it reached a maximum value around pH 8.0. The adsorption capacity increased with the increase in temperature. The adsorption isothermal data could be well interpreted by the Freundlich isotherm model. The kinetic experimental data properly correlated with the first-order kinetic model, which indicated that the reaction is the adsorption control step. The apparent adsorption activation energy was 27.62 kJ mol−1 and the first-order constant for SCMD protein was 0.01254 min−1 at 293 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号