首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymeric microcapsules have begun to attract significant interest in biomedical fields. As the interactions between cells and materials are influenced by both cell type and elasticity, silk‐based microcapsules are synthesized with desirable mechanical features using layer‐by‐layer assembly and then the uptake of these microcapsules by BeWo b30 placental cells is investigated. Cellular uptake is enhanced with increasing of elastic modulus of the silk‐based microcapsules. More importantly, the distinct microvilli of these cells behaves in a diverse manner when exposed to microcapsules with different mechanical features, including grabbing (rigidity) or random touching (soft) behavior; these factors affect the final uptake. Inspired by oocyte pickup, the grabbing behavior of the microvilli may provide valuable information with which to elucidate the specific characteristics of uptake between cells and man‐made particles, particularly in the reproductive system.  相似文献   

2.
The sea urchin egg surface at fertilization has been examined with the scanning electron microscope to reveal the movements of the spermatozoon from the exterior, through the surface layers, and into the egg cytoplasm. The layers that the spermatozoon encounter have been studied to determine their physical and chemical natures and their role in early development. By studying the outside of whole eggs and the inner face of surfaces isolated shortly after fertilization, it has been possible to compile data on the movements of the spermatozoon through the egg surface. The spermatozoon initially contacts the egg with the elongated acrosomal process. The vitelline sheet, the outermost layer of the egg, separates slightly next to the attached spermatozoon. As membrane fusion between the gametes occurs, the plasma membrane from the egg engulfs the spermhead, the cortical granules start to discharge their contents, and a spreading surface deformation, concommitant with a distortion of the fibrous cortex, is initiated. A cluster of elongate microville surround the perpendicularly fusing spermatozoon. These microvilli interidigitate as the spermatozoon is forced to lie upon the egg surface between the plasma membrane and the matrix of cortical fibers. The spermatozoon then rotates additionally to enter the egg cytoplasm with the posterior end first; it has rotated 180 degrees through the cell surface. Finally, it detaches into the egg cytoplasm, leaving a scar in the cortex through which it penetrated. The egg cortex, previously unobserved by electron microscopy, is revealed to be composed of 50-200 nm fibers. At fertilization they are uniformly organized but during later development this order is lost. The cortex is from 0.2-0.5 micronm thick and is a contractile structure. The role of the outer surface in releasing the cell from the metabolic constraints of the unfertilized egg is shown, and the apparent differences in the mobilities of the membranes derived from the sperm and from the egg are demonstrated. The relation of these layers to the movements of the spermatozoon, to the activation of the egg, to the block to polyspermy, and to each other are discussed.  相似文献   

3.
The friction and lateral stiffness of the contact between an atomic force microscopy (AFM) probe tip and an atomically flat dolomite (104) surface were investigated in contact with two aqueous solutions that were in equilibrium and supersaturated with respect to dolomite, respectively. The two aqueous solutions yielded negligible differences in friction at the native dolomite-water interface. However, the growth of a Ca-rich film from the supersaturated solution, revealed by X-ray reflectivity measurements, altered the probe-dolomite contact region sufficiently to observe distinct friction forces on the native dolomite and the film-covered surface regions. Quantitative friction-load relationships demonstrated three physically distinct load regimes for applied loads up to 200 nN. Similar friction forces were observed on both surfaces below 50 nN load and above 100 nN load. The friction forces on the two surfaces diverged at intermediate loads. Quantitative measurements of dynamic friction forces at low load were consistent with the estimated energy necessary to dehydrate the surface ions, whereas differences in mechanical properties of the Ca-rich film and dolomite surfaces were evidently important above 50 nN load. Attempts to fit the quantitative stiffness-load data using a Hertzian contact mechanical model based on bulk material properties yielded physically unrealistic fitting coefficients, suggesting that the interfacial contact region must be explicitly considered in describing the static and dynamic contact mechanics of this and similar systems.  相似文献   

4.
Hydrogel microspheres, beads, and capsules of uniform size, differing in their chemical composition, have been prepared by electrostatic complex formation of sodium alginate with divalent cations and polycations. These have served as model spheres to study the influence of the chemical composition on both surface characteristics and bulk mechanical properties. Resistance to compression experiments yielding the compression work clearly identified differences as a function of the composition, with forces at maximal compression in the range of 34-455 mN. The suitability and informative value of atomic force microscopy have been confirmed for the case where surface characterization is performed in a liquid environment equivalent to physiological conditions. Surface imaging and mechanical response to indentation revealed different average surface roughness and Young's moduli for all hydrogel types ranging from 0.9 to 14.4 nm and from 0.4 to 440 kPa, respectively. The hydrogels exhibited pure elastic behavior. Despite a relatively high standard deviation, resulting from both surface and batch heterogeneity, nonoverlapping ranges of Young's moduli were reproducibly identified for the selected model spheres. The findings indicate the reliability of contact mode atomic force microscopy to quantify local surface properties, which may have an impact on the biocompatibility of alginate-based hydrogel materials of different composition and conditions of preparation. Moreover, it seems that local elastic properties and bulk mechanical characteristics are subject to analogous composition influences.  相似文献   

5.
Biomimetic membranes are fluid and can undergo two different elastic deformations, bending and stretching. The bending of a membrane is primarily governed by two elastic parameters: its spontaneous (or preferred) curvature m and its bending rigidity κ. These two parameters define an intrinsic tension scale, the spontaneous tension 2 κm2. Membrane stretching and compression, on the other hand, are determined by the mechanical tension acting within the membrane. For vesicle membranes, the two elastic deformations are coupled via the enclosed vesicle volume even in the absence of mechanical forces as shown here by minimizing the combined bending and stretching energy with respect to membrane area for fixed vesicle volume. As a consequence, the mechanical tension within a vesicle membrane depends on the spontaneous curvature and on the bending rigidity. This interdependence, which is difficult to grasp intuitively, is then illustrated for a variety of simple vesicle shapes. Depending on the vesicle morphology, the magnitude of the mechanical tension can be comparable to or can be much smaller than the spontaneous tension.  相似文献   

6.
Modulation of the intracellular concentration of cyclic AMP has been associated with a regulatory role in cell division, cell morphology, and physical properties of the plasma membrane. Untransformed rat kidney cells in culture exhibit epitheloid morphology, high intracellular cyclic AMP levels, and contact inhibition of growth. Untransformed rat kidney cells transformed with the Kirsten murine sarcoma virus exhibit a low cyclic AMP content, rapid growth rate, and a loss of contact inhibition. Scanning electron microscopy reveals a distinctive difference in the surface structure of the two cell types during Gl of the cell cycle. The surface of the transformed cell is covered with microvilli while its untransformed counterpart is devoid of microvilli. The presence of microvilli can be controlled as a function of temperature by two temperature-sensitive mutants of the Kirsten sarcoma virus (ts6t6 and ts371 cl 5). In the ts6t6 mutant, growth at 32 degrees C results in a low cyclic AMP content and the presence of microville, while growth at 39 degrees C results in a high cyclic AMP content and a decrease in microvilli. The opposite effect is seen with the ts371 cl 5 mutant. Correlation of cyclic AMP content with the presence of microvilli suggests that this surface phenomenon is a function of cyclic AMP concentration.  相似文献   

7.
Atomic force microscopes (AFM) are commonly used to measure adhesion at nanoscale between two surfaces. To avoid uncertainties in the contact areas between the tip and the surface, colloidal probes have been used for adhesion measurements. We measured adhesion between glass spheres and silicon (100) surface using colloidal probes of different radii under controlled conditions (relative humidity of < 3%, temperature of 25 +/- 1 degrees C). Results showed that the adhesion forces did not correlate with the radii of the spheres as suggested by elastic contact mechanics theories. Surface roughness and random surface features were found on the surfaces of the colloidal probes. We evaluated various roughness parameters, Rumpf and Rabinovich models, and a load-bearing area correction model in an attempt to correct for the roughness effects on adhesion, but the results were unsatisfactory. We developed a new multiscale contact model taking into account elastic as well as plastic deformation in a successive contacting mode. The new model was able to correct for most of the surface roughness features except for surface ridges with sharp angular features, limited by the spherical asperity assumption made in the model.  相似文献   

8.
Cellular membranes exhibit a variety of controlled curvatures, with filopodia, microvilli, and mitotic cleavage furrows being only a few of many examples. Coupling between local curvature and chemical composition in membranes could provide a means of mechanically controlling the spatial organization of membrane components. Although this concept has surfaced repeatedly over the years, controlled experimental investigations have proven elusive. Here, we introduce an experimental platform, in which microfabricated surfaces impose specific curvature patterns onto lipid bilayers, that allows quantification of mechanochemical couplings in membranes. We find that, beyond a critical curvature value, membrane geometry governs the spatial ordering of phase-separated domain structures in membranes composed of cholesterol and phospholipids. The curvature-controlled ordering, a consequence of the distinct mechanical properties of the lipid phases, makes possible a determination of the bending rigidity difference between cholesterol-rich and cholesterol-poor lipid domains. These observations point to a strong coupling between mechanical bending and chemical organization that should have wide-reaching consequences for biological membranes. Curvature-mediated patterning may also be useful in controlling complex fluids other than biomembranes.  相似文献   

9.
The pull-off force required to separate two elastic bodies in adhesive binding depends on the surface shapes of the corresponding binding regions on the two bodies. Given a fixed binding area A, the optimal shapes are those which give the maximum pull-off force sigma(th)A where sigma(th) is the theoretical strength of interactive forces between the two solids. Here we study closed form solutions to the optimal shapes for adhesive binding over a small circular region where slip is allowed whenever shear stress along the contact interface exceeds a critical value.  相似文献   

10.
The micromechanical properties of pure and cholesterol modified egg yolk phosphatidylcholine (EggPC) vesicles prepared by sonication were studied by atomic force microscopy (AFM) on mica surface. The force curves between an AFM tip and an unruptured vesicle were obtained by contact mode. During approach, two repulsion regions with two breaks were observed. The slopes of the two repulsive force regimes for the pure EggPC vesicles are determined to be several times lower than that of EggPC/cholesterol vesicles. The elastic properties from force plot analysis based on the Hertzian model showed that Young's modulus (E) and the bending modulus (kc) of cholesterol-modified vesicles increased several-fold compared with pure EggPC vesicles. The significant difference is attributed to the enhanced rigidity of the EggPC vesicles as a result of the incorporation of cholesterol molecules. The behavior of cholesterol-modified vesicles upon adsorption is different from that in solution as revealed by mechanical properties. The results indicate that AFM can provide a direct method to measure the mechanical properties of adsorbed small liposomes and to detect the stability change of liposomes.  相似文献   

11.
Dufrêne YF  Boland T  Schneider JW  Barger WR  Lee GU 《Faraday discussions》1998,(111):79-94; discussion 137-57
Interaction forces and topography of mixed phospholipid-glycolipid bilayers were investigated by atomic force microscopy (AFM) in aqueous conditions with probes functionalized with self-assembled monolayers terminating in hydroxy groups. Short-range repulsive forces were measured between the hydroxy-terminated probe and the surface of the two-dimensional (2-D) solid-like domains of distearoyl-phosphatidylethanolamine (DSPE) and digalactosyldiglyceride (DGDG). The form and range of the short-range repulsive force indicated that repulsive hydration/steric forces dominate the interaction at separation distances of 0.3-1.0 nm after which the probe makes mechanical contact with the bilayers. At loads < 5 nN the bilayer was elastically deformed by the probe, while at higher loads plastic deformation of the bilayer was observed. Surprisingly, a short-range repulsive force was not observed at the surface of the 2-D liquid-like dioleoylphosphatidylethanolamine (DOPE) film, despite the identical head groups of DOPE and DSPE. This provides direct evidence for the influence of the structure and mechanical properties of lipid bilayers on their interaction forces, an effect which may be a major importance in the control of biological processes such as cell adhesion and membrane fusion. The step height measured between lipid domains in the AFM topographic images was larger than could be accounted for by the thickness and mechanical properties of the molecules. A direct correlation was observed between the repulsive force range over the lipid domains and the topographic contrast, which provides direct insight into the fundamental mechanisms of AFM imaging in aqueous solutions. This study demonstrates that chemically modified AFM probes can be used in combination with patterned lipid bilayers as a novel and powerful approach to characterize the nanometer scale chemical and physical properties of heterogeneous biosurfaces such as cell membranes.  相似文献   

12.
Identity of mathematical problems concerning calculation of the distribution of reactants’ concentrations and the current near the surface of a nonuniform (strip) electrode and distribution of displacements and forces in the case of an elastic layer “antiplane” deformation caused by the punch action. Formulas for calculating the current at a strip electrode are derived for various ratios between the electrode width and the diffusion layer thickness by means of asymptotic methods designed for calculating problems of mechanical contact interactions. It is noted that calculations of the diffusion current for involved activity distributions at the electrode surface may benefit from asymptotic methods of mechanics of contact interactions.  相似文献   

13.
We study how a local air plasma treatment affects the mechanical properties of polystyrene by performing indentation measurements on the polymer in the elastic and plastic regime. The local exposure to plasma was obtained by placing a shadow-mask with quadratic holes of 45 x 45 microm(2) on top of the polymer substrate, providing uncovered (exposed to the plasma) and covered (protected from the plasma) areas. We have analyzed quantitatively the topography and the elastic-plastic properties of such a sample with atomic force microscopy (AFM) measurements, both before and after plasma treatment. To enhance the differences between covered and uncovered areas, the sample has been exposed to solvent vapor. This generates regions which are differently swollen. The quantitative investigation of the mechanical properties of the swollen sample for different solvent exposure times gives further insight into the changes of polystyrene mechanical properties caused by the plasma.  相似文献   

14.
he ethylene-vinyl alcohol copolymer membrane with polyionically complexationalized layer has been prepared by in situ polyionic complexation from cationically modified surface of EVAL membrane and phosphorylated EVAL aqueous solution, which can be considered as a feasible route to modify the surface of membrane for improving the properties , and which is a way to avoid the using of shielding solvent for the processing of polygonic complexes. The condition for the phosphorylation of EVAL has been studied. The effect of the chemical composition of the polyionic complex membrane on the contact angle, water con-tent,mechanical and thermal properties,as well as blood compatibility have been investigated.  相似文献   

15.
表面修饰乙烯-乙烯醇共聚物膜的“原地”聚离子复合化及其若干性能张军,王大力,刘新三(天津市合成材料研究所,天津,300220)李福绵(北京大学化学系,北京,100871)关键词聚离子复合物,“原地”聚离子复合,磷酸酯化,乙烯-乙烯醇共聚物膜聚离子复合...  相似文献   

16.
17.
Force spectroscopy using the atomic force microscope (AFM) is a powerful technique for measuring physical properties and interaction forces at microbial cell surfaces. Typically for such a study, the point at which a force measurement will be made is located by first imaging the cell using AFM in contact mode. In this study, we image the bacterial cell Shewanella putrefaciens for subsequent force measurements using AFM in force-volume mode and compare this to contact-mode images. It is known that contact-mode imaging does not accurately locate the apical surface and periphery of the cell since, in contact mode, a component of the applied load laterally deforms the cell during the raster scan. Here, we illustrate that contact-mode imaging does not accurately locate the apical surface and periphery of the cell since, in contact mode, a component of the applied load laterally deforms the cell during the raster scan. This is an artifact due to the deformability and high degree of curvature of bacterial cells. We further show that force-volume mode imaging avoids the artifacts associated with contact-mode imaging due to surface deformation since it involves the measurement of a grid of individual force profiles. The topographic image is subsequently reconstructed from the zero-force height (the contact distance between the AFM tip and the surface) at each point on the cell surface. We also show how force-volume measurements yield applied load versus indentation data from which mechanical properties of the cell such as Young's modulus, cell turgor pressure and elastic and plastic energies can be extracted.  相似文献   

18.
We analyze the deformation and bursting process of nonspherical organosiloxane capsules in centrifugal fields. Measurements were performed in a commercial spinning-drop tensiometer at different values of tube rotation. A theoretical analysis of the mechanics of initially ellipsoidal elastic shells subjected to centrifugal forces is developed where the deformation of the capsule is predicted as a function of the initial geometry and membrane elastic properties. For different types of organosiloxane membranes the Poisson number varies between 0 and 0.9. This phenomenon points to a considerable reduction of the membrane thickness at the onset of mechanical stress. Membrane-breaking processes always initiated at one of the pole ends of the capsules. Such rupture processes can be interpreted in terms of the derived theoretical model.  相似文献   

19.
This paper proposes a theoretical framework for the study of contact-wear. Wear phenomena due to contact and relative motion between two solids are characterized by a loss of material. The detached particles as well as damaged contact areas of the solids form an interface with complex mechanical properties. Using an analysis of the dissipation in this interface, an energy release rate and then a wear criterion are defined. This dissipation associated with loss of material will be called wear dissipation. An application to steady-state wear processes is then given.  相似文献   

20.
In this paper we show that the director profile of a low pre-tilt surface stabilized ferroelectric liquid crystal passes through quasi-static stressed states during domain switching under direct drive conditions. Using polarized stroboscopic microscopy, we have observed two quasi-static transmission levels during a domain switching transition from dark to light. This is a result of the directors reorienting into stressed profiles both before and after the chevron interface has switched. By modelling the interaction between the elastic forces and the torque from the applied field, we have determined these voltage dependent director profiles and, by calculating their corresponding transmissivities, have shown very good agreement with the experimentally observed values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号