首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metastasis is the leading cause of most cancer deaths, as opposed to dysregulated cell growth of the primary tumor.Molecular mechanisms of metastasis have been studied for decades and the findings have evolved our understanding of the progression of malignancy. However, most of the molecular mechanisms fail to address the causes of cancer and its evolutionary origin, demonstrating an inability to find a solution for complete cure of cancer. After being a neglected area of tumor biology for quite some time, recently several studies have focused on the impact of the tumor microenvironment on cancer growth. The importance of the tumor microenvironment is gradually gaining attention, particularly from the perspective of biophysics. In vitro three-dimensional(3-D) metastatic models are an indispensable platform for investigating the tumor microenvironment, as they mimic the in vivo tumor tissue. In 3-D metastatic in vitro models, static factors such as the mechanical properties, biochemical factors, as well as dynamic factors such as cell–cell, cell–ECM interactions, and fluid shear stress can be studied quantitatively. With increasing focus on basic cancer research and drug development, the in vitro 3-D models offer unique advantages in fundamental and clinical biomedical studies.  相似文献   

2.
Invasion of melanoma cells from the primary tumor involves interaction with adjacent tissues and extracellular matrix. The extent of this interaction is not fully understood. In this study Raman spectroscopy was applied to cryo-sections of established 3D models of melanoma in human skin. Principal component analysis was used to investigate differences between the tumor and normal tissue and between the peri-tumor area and the normal skin. Two human melanoma cells lines A375SM and C8161 were investigated and compared in 3D melanoma models. Changes were found in protein conformations and tryptophan configurations across the entire melanoma samples, in tyrosine orientation and in more fluid lipid packing only in tumor dense areas, and in increased glycogen content in the peri-tumor areas of melanoma. Raman spectroscopy revealed changes around the perimeter of a melanoma tumor as well as detecting differences between the tumor and the normal tissue.  相似文献   

3.
针对某些原发性肿瘤能够抑制远处转移性肿瘤快速生长的特性,建立转移性肿瘤附近血管内皮细胞迁移运动的二维、三维离散数学模型,对原发性肿瘤分泌的Angiostatin、转移性肿瘤分泌的促血管生成因子(TAF)共同作用下转移性肿瘤内外微血管网的生成过程进行数值模拟.结果表明,原发性肿瘤分泌的血管抑素对转移性肿瘤内外微血管网的生成速度、成熟度及血管分支数量均有明显的抑制作用;可以降低转移性肿瘤的血管化程度,有效抑制转移性肿瘤的快速生长,达到治疗肿瘤的目的;为肿瘤抗血管生成治疗提供有益信息.  相似文献   

4.
Recent tumor growth models are often based on the multiphase mixture framework. Using bifurcation theory techniques, we show that such models can give contour instabilities. Restricting to a simplified but realistic version of such models, with an elastic cell-to-cell interaction and a growth rate dependent on diffusing nutrients, we prove that the tumor cell concentration at the border acts as a control parameter inducing a bifurcation with loss of the circular symmetry. We show that the finite wavelength at threshold has the size of the proliferating peritumoral zone. We apply our predictions to melanoma growth since contour instabilities are crucial for early diagnosis. Given the generality of the equations, other relevant applications can be envisaged for solving problems of tissue growth and remodeling.  相似文献   

5.
BackgroundDiffusion-weighted MRI (DWI) signal attenuation is often not mono-exponential (i.e. non-Gaussian diffusion) with stronger diffusion weighting. Several non-Gaussian diffusion models have been developed and may provide new information or higher sensitivity compared with the conventional apparent diffusion coefficient (ADC) method. However the relative merits of these models to detect tumor therapeutic response is not fully clear.MethodsConventional ADC, and three widely-used non-Gaussian models, (bi-exponential, stretched exponential, and statistical model), were implemented and compared for assessing SW620 human colon cancer xenografts responding to barasertib, an agent known to induce apoptosis via polyploidy. Bayesian Information Criterion (BIC) was used for model selection among all three non-Gaussian models.ResultsAll of tumor volume, histology, conventional ADC, and three non-Gaussian DWI models could show significant differences between control and treatment groups after four days of treatment. However, only the non-Gaussian models detected significant changes after two days of treatment. For any treatment or control group, over 65.7% of tumor voxels indicate the bi-exponential model is strongly or very strongly preferred.ConclusionNon-Gaussian DWI model-derived biomarkers are capable of detecting tumor earlier chemotherapeutic response of tumors compared with conventional ADC and tumor volume. The bi-exponential model provides better fitting compared with statistical and stretched exponential models for the tumor and treatment models used in the current work.  相似文献   

6.
酰氨质子转移(amide proton transfer, APT)成像是一种新的分子MRI技术,它可用来测量组织中内源性蛋白质. 理论上,APT-MRI信号强度主要取决于游离蛋白质的酰氨质子浓度以及交换速度,而酰氨质子交换速度与组织pH有关. 因此,APT-MRI技术已经被用于无创性中风pH成像(通常pH降低)和肿瘤蛋白质含量成像(通常蛋白质量提高). 近期对大鼠的实验表明,APT-MRI技术可用来区分放射性坏死和胶质瘤. 该综述文章简要地介绍了APT成像的基本原理以及它在动物模型与临床中风和肿瘤成像中的应用.  相似文献   

7.
The present studies were conducted with RIF-1, M5076 and Panc02 subcutaneous tumor models to assess the relationship between tissue-free water compartmentalization and observed tissue T1 and T2 changes at 10 MHz. Observed T1 was shown to correlate directly with total extracellular water and interstitial water volumes. T1 and T2 were also inversely related to intracellular water volumes. T1 and T2 decreases after dexamethasone treatment were, however, most closely correlated with changes in tumor extracellular water and not changes in cell or total water volumes. Studies to assess Gd-DTPA-dimeg dose dependent T1 and T2 modification in model serum protein solutions indicated that although the Gd concentration that reduced T2 by 50% was about 2.5 fold greater than that required to reduce T1 equally, the of the concentration dependent T1 and T2 modifications were similar. In studies with tumor models, the injected dose of Gd-DTPA-dimeg that reduced T1 by 50% was inversely correlated with tumor extracellular water volumes. The slopes for dose dependent T1 modification in all tumors were similar and similar to that observed for model protein solutions. Gd-DTPA-dimeg had a different effect on observed T2 values for the 3 tumor models. Exponential slopes were about twice that observed for T2 modification of serum protein solutions, and Gd-DTPA-dimeg doses that reduced observed tumor T2 ranged from 9 to 50 times that necessary to similarly reduce T1. The results from these studies indicate that the observed T1, for these tumors, was dominated by relaxation of water protons in interstitial water but that the observed T2 was most strongly influenced by proton relaxation in water compartments that were unavailable to the Gd labeled probe.  相似文献   

8.
王璟  杨根  刘峰 《物理学报》2015,64(5):58707-058707
肿瘤细胞和所处微环境的物理性质, 以及它们之间的相互物理作用对于肿瘤的产生、发展与转移都有极大的影响, 这使得从物理学角度探索肿瘤研究成为了必然趋势. 肿瘤转移是癌症致死的最大因素, 而肿瘤细胞迁移中的极化是肿瘤转移的重要一步. 本文总结了物理学实验和模型在揭示细胞迁移和极化机理方面的贡献. 实验上应用最新的微流控芯片技术与表面微模型化技术等手段, 研究空间维度、黏附行为、机械力等物理信号对于细胞极性的建立与保持以及细胞迁移行为的影响后, 发现物理信号与生化反应之间的相互耦合对于细胞迁移有着至关重要的作用; 理论上基于扩散反应方程, 已经建立了一系列表征细胞极化的模型. 今后的研究将结合物理实验建立肿瘤细胞迁移中的极化模型, 进而发展针对肿瘤细胞感知物理信号的新的治疗肿瘤转移方法.  相似文献   

9.
The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy.  相似文献   

10.
We systematically study the growth kinetics and the critical surface dynamics of cell monolayers by a class of computationally efficient cellular automaton models avoiding lattice artifacts. Our numerically derived front velocity relationship indicates the limitations of the Fisher-Kolmogorov-Petrovskii-Piskounov equation for tumor growth simulations. The critical surface dynamics corresponds to the Kardar-Parisi-Zhang universality class, which disagrees with the interpretation by Bru et al. of their experimental observations as generic molecular-beam-epitaxy-like growth, questioning their conjecture that a successful therapy should lead away from molecular beam epitaxy.  相似文献   

11.
The pharmacokinetics (PK) of carrier-mediated agents (CMA) is dependent upon the carrier system. As a result, CMA PK differs greatly from the PK of small molecule (SM) drugs. Advantages of CMAs over SMs include prolonged circulation time in plasma, increased delivery to tumors, increased antitumor response, and decreased toxicity. In theory, CMAs provide greater tumor drug delivery than SMs due to their prolonged plasma circulation time. We sought to create a novel PK metric to evaluate the efficiency of tumor and tissue delivery of CMAs and SMs. We conducted a study evaluating the plasma, tumor, liver, and spleen PK of CMAs and SMs in mice bearing subcutaneous flank tumors using standard PK parameters and a novel PK metric entitled relative distribution over time (RDI-OT), which measures efficiency of delivery. RDI-OT is defined as the ratio of tissue drug concentration to plasma drug concentration at each time point. The standard concentration versus time area under the curve values (AUC) of CMAs were higher in all tissues and plasma compared with SMs. However, 8 of 17 SMs had greater tumor RDI-OT AUC0–last values than their CMA comparators and all SMs had greater tumor RDI-OT AUC0–6 h values than their CMA comparators. Our results indicate that in mice bearing flank tumor xenografts, SMs distribute into tumor more efficiently than CMAs. Further research in additional tumor models that may more closely resemble tumors seen in patients is needed to determine if our results are consistent in different model systems.  相似文献   

12.
Breakdowns of two-zone random networks of the Erdős–Rényi type are investigated. They are used as mathematical models for understanding the incompleteness of the tumor network breakdown under radiochemotherapy, an incompleteness that may result from a tumor’s physical and/or chemical heterogeneity. Mathematically, having a reduced node removal probability in the network’s inner zone hampers the network’s breakdown. The latter is described quantitatively as a function of reduction in the inner zone’s removal probability, where the network breakdown is described in terms of the largest remaining clusters and their size distributions. The effects on the efficacy of radiochemotherapy due to the tumor micro-environment (TME)’s chemical make-up, and its heterogeneity, are discussed, with the goal of using such TME chemical heterogeneity imaging to inform precision oncology.  相似文献   

13.
31P-magnetic resonance spectroscopy (MRS) has been shown to be a promising method for monitoring tumor response to radiation therapy. The purpose of the work reported here was to investigate whether the usefulness of 31P-MRS might be enhanced by measurement of spin-lattice relaxation times (T1s) in addition to resonance ratios. The work was based on the hypothesis that tumors having a high probability of being controlled locally would show shortened T1s during the treatment course due to reoxygenation and development of necrosis. BEX-t human melanoma xenografts, which show efficient reoxygenation and development of necrosis following single dose irradiation, were used as tumor models. Tumors were treated with single doses of 5.0 or 15.0 Gy and the T1s of the inorganic phosphate and nucleoside triphosphate β resonances were measured as a function of time after irradiation by using the superfast inversion recovery method. Fractional tumor water content was determined by drying excised tumors at 50°C until a constant weight was reached. The T1s in irradiated tumors were either longer than or not significantly different from those in unirradiated control tumors. The increase in the T1s following irradiation coincided in time with a radiation-induced increase in tumor water content, suggesting a causal relationship. The effects of reoxygenation and development of necrosis on T1s were probably overshadowed by the effects of tumor water content. Consequently, the usefulness of 31P-MRS in monitoring tumor response to radiation therapy might not be significantly enhanced by measurement of T1s.  相似文献   

14.
Carbon‐based nanomaterials could afford versatile potential applications in biomedical optical imaging and as nanoparticle drug carriers, owing to their promising optical and biocompatible capabilities. In this paper, it is first found that amphipathic cetylpyridinium chloride (CPC)‐stabilized oil‐soluble carbon dots (CDs) could self‐assemble into hydrophilic CDs clusters with hydrophobic core under ultrasound, in which CPC acts as carbon source, stabilizer, and phase transfer agent. Next, the size‐control (for size‐dependent passive tumor targeting) and doxorubicin (DOX) uploading of aqueous CDs clusters, and subsequent surface charge modification via overcoating with cRGD‐ and octylamine‐modified polyacrylic acid (cRGD‐PAA‐OA) (reversing their surface charges into negative and introducing active tumor‐targeting ability) are explored systematically. Based on this sequential administration mode, CDs‐cluster‐DOX/cRGD‐PAA‐OA nanocomposites exhibit selective human malignant glioma cell line (U87MG) tumor targeting. In in vitro drug release experiments, the nanocomposites could release DOX timely. Owning to the dual tumor targeting effects and seasonable drug release, CDs‐cluster‐DOX/cRGD‐PAA‐OA show remarkably tumor targetability and enhanced antitumor efficacy (and reduced adverse reaction), comparing to free DOX in animal models. These results indicate that fabricating nanocomposite via co‐self‐assembly strategy is efficient toward drug delivery system for tumor‐targeting theranostic.  相似文献   

15.
During the last few years a quite large number of fluorescence molecular imaging applications have been reported in the literature, as one of the most challenging aspects in medical imaging is to “see” a tumor embedded into tissue, which is a turbid medium, by using fluorescent probes for tumor labeling. However, the forward solvers, required for the successful convergence of the inverse problem, are still lacking accuracy and time feasibility. Moreover, initialization of these solvers may be proven even more difficult than solving the inverse problem itself. This paper describes in depth a coupled radiative transfer equation and diffusion approximation model for solving the forward problem in fluorescence imaging. The theoretical confrontation of these solvers comprises the model deployment, its Galerkin finite elements approximation and the domain discretization scheme. Finally, a new optical properties mapping algorithm, based on super-ellipsoid models, is implemented, providing a fully automated simulation target construction within feasible time.  相似文献   

16.
Liquid biopsy is regarded as a promising strategy for assisting precision medicine because of its convenience, noninvasiveness, and ability to overcome tumor heterogeneity and achieve early detection. Recently, impressive advancements in plasmonic biosensors, artificial intelligence, and portable Raman equipment have yielded unprecedented progress in surface-enhanced Raman spectroscopy (SERS)–based point-of-care testing (POCT) systems for liquid biopsy. The development of these systems presents a paradigm shift in on-site liquid biopsy applications by leveraging the unique benefits of efficiency, fast analysis, portability, affordability, and user-friendliness. Herein, these advances are introduced over the last 3 years in the field of SERS-based POCT systems for labeled and label-free biomarker analysis in body fluids, including tumor circulating proteins and cells, exosomes, micro-RNA, and circulating tumor DNA. Additionally, powerful machine learning algorithms (including deep learning algorithms) are integrated with SERS to effectively extract potential data features and generate precise diagnostic models. The review highlights the use of handheld and portable Raman devices in significantly promoting the application of SERS-based POCT in clinical scenarios. Finally, the review outlines the challenges and future perspectives of this technology.  相似文献   

17.
18.
Hepatic metastases: rat models for imaging research   总被引:2,自引:0,他引:2  
Improved rat liver tumor models with solitary or multiple metastatic tumors were developed for radiological imaging research. Unlike previous studies which employed trocar inoculation of tumor fragments, an enzymatically disaggregated cell suspension of mammary cancer was injected by fine needle either directly into the liver to produce solitary cancer nodules, or indirectly via the spleen or mesenteric vein to produce multiple liver metastases. Tumor size was proportional to the time elapsed after implantation. The operative mortality of direct liver, splenic parenchymal, and mesenteric inoculations were 8%, 4%, and 27%, respectively. MR tissue characteristics, image contrast, and pharmaceutical enhancement of these tumors closely resembles human hepatic metastases. The availability of reproducible, inexpensive animal models of metastatic cancer allows efficient evaluation of new liver imaging techniques.  相似文献   

19.
A whole-body small animal radiofrequency coil was designed and built for use with a 0.35 Tesla clinical magnetic resonance imager. The primary motivation for this work was to evaluate the effectiveness of this system for small animal magnetic resonance imaging of tumor-bearing mice. This noninvasive technique is shown to provide high resolution whole-body images of mice, to be capable of detecting intra-organ tumors, and to be useful for evaluating tumor size and growth. Its potential for monitoring response to experimental therapeutic regimens is also noted. Two tumor models were examined--colon adenocarcinoma MCA-38 and human ASPC-1 pancreatic adenocarcinoma.  相似文献   

20.
Dynamic contrast-enhanced magnetic resonance imaging (DCEMRI) was used to examine the acute effects of treatment with an inhibitor of vascular endothelial growth factor (VEGF) signaling. ZD4190 is an orally bioavailable inhibitor of VEGF receptor-2 (KDR) tyrosine kinase activity, which elicits broad-spectrum antitumour activity in preclinical models following chronic once-daily dosing. Nude mice, bearing established (0.5-1.0 mL volume) human prostate (PC-3), lung (Calu-6) and breast (MDA-MB-231) tumor xenografts, were dosed with ZD4190 (p.o.) using a 1 day (0 and 22 h) or 7 day (0, 24, 48, 72, 96,120,144, and 166 h) treatment regimen. DCEMRI was employed 2 h after the last dose of ZD4190, using the contrast agent gadopentetate dimeglumine. Dynamic data were fit to a compartmental model to obtain voxelwise K(trans), the transfer constant for gadopentetate into the tumor. K(trans) was averaged over the entire tumor, and a multi-threshold histogram analysis was also employed to account for tumor heterogeneity. Reductions in K(trans) reflect reductions in flow, in endothelial surface area, and/or in vascular permeability. A vascular input function was obtained for each mouse simultaneously with the tumor DCEMRI data. ZD4190 treatment produced a dose-dependent (12.5-100 mg x kg(-1) per dose) reduction in K(trans) in PC-3 prostate tumors. At 100 mg x kg(-1), the largest concentration examined, ZD4190 reduced K(trans) in PC-3 tumors by 31% following 2 doses (1 day treatment regimen; p < 0.001) and by 53% following 8 doses (7 day regimen; p < 0.001). Comparative studies in the three models using a showed similar reductions in K(trans) for the lung and breast tumors using the histogram analysis, although the statistical significance was lost when K(trans) was averaged over the entire tumor. Collectively these studies suggest that DCEMRI using gadopentetate may have potential clinically, for monitoring inhibition of VEGF signaling in solid tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号