首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
一氧化氮荧光分子探针   总被引:1,自引:0,他引:1  
张灯青  赵圣印  刘海雄 《化学进展》2008,20(9):1396-1405
一氧化氮(NO)在生物体中扮演重要的角色,对其选择性识别引起了人们极大的兴趣。本文综述了两类NO荧光分子探针的研究进展,即含金属离子的NO荧光分子探针:如Co(Ⅱ)、Fe(Ⅱ)、 Ru(Ⅱ)、Rh(Ⅱ)和Cu(Ⅱ)配合物作为荧光打开的NO分子探针;邻苯二胺类荧光分子探针:如2,3-二氨基萘(DAN)、二氨基荧光素衍生物(DAFs)、二氨基罗丹明衍生物(DARs)、硼二吡咯甲基衍生物(BODIPY)和三碳菁衍生物(DAC)等。  相似文献   

2.
巯基氨基酸水平异常与多种疾病相关,其检测仍存在一定的局限,研究检测巯基氨基酸的荧光探针具有一定的价值.以苊为原料合成了61个1,8-萘酰亚胺衍生物,研究了该类化合物的荧光性能及其作为半胱氨酸含量测定的荧光探针的可能性.紫外光谱分析表明1,8-萘酰亚胺衍生物上N-取代基对最大吸收波长无明显影响;荧光光谱(FL)的性能测试显示硝基萘酰亚胺衍生物N-甲基-4-硝基-1,8-萘二甲酰亚胺(4a)~4-硝基-N-间氟苯基-1,8-萘二甲酰亚胺(4s)无荧光,氨基萘酰亚胺衍生物N-甲基-4-氨基-1,8-萘二甲酰亚胺(5a)~4-氨基-N-间氟苯基-1,8-萘二甲酰亚胺(5s)有强烈黄色荧光,而马来酰亚胺萘酰亚胺衍生物N-甲基-4-(1H-吡咯-2,5-二酮-1-基)-1,8-萘二甲酰亚胺(6a)~4-(1H-吡咯-2,5-二酮-1-基)-N-(间氟苯基)-1,8-萘二甲酰亚胺(6s)有微弱蓝色荧光,其中7个马来酰亚胺萘酰亚胺衍生物探针对半胱氨酸(Cys)溶液有荧光点亮效应.对7个探针加入21种其它氨基酸作为干扰项的测试显示探针对半胱氨酸检测有良好的选择性.研究了不同pH值下荧光强度,检测探针与半...  相似文献   

3.
自然界中,糖类不仅作为生命体系的能量物质和结构物质,而且还作为信息分子在生命过程的细胞识别和调控中扮演着重要的角色,因此对糖识别的研究将极大地有助于糖类参与生理和病理过程的研究。生命体系中糖识别过程一方面基于受体的极性基团与糖羟基的氢键作用,另一方面依靠受体结构中的含芳环非极性基团与糖CH基相互作用,所以在极性溶液水中通过非共价键相互作用实现糖识别过程是当今化学界一个十分吸引人且又极具挑战性的研究课题。人工合成糖识别受体为研究自然界中糖识别过程的基本机制提供了一种有参考价值的模型系统,同时为仿生应用提供了有力的技术支持。本文从超分子化学、多分枝型、合成凝集素类和聚合物界面4种体系论述了近年来非硼酸类人工糖识别受体在水相中识别糖的研究进展及其潜在应用,并且对合成凝集素和界面糖识别体系做了特殊点评,最后对仿生人工合成受体在水相中对糖识别的未来的发展方向做了展望。  相似文献   

4.
3-硝基-4-溴-1,8-萘二甲酸酐与己胺的反应   总被引:1,自引:0,他引:1  
3-硝基-4-溴-1,8-萘二甲酸酐与己胺的反应柳波沈永嘉*董黎芬(华东理工大学精细化工研究所,上海,200237)关键词合成结构表征1,8-萘二甲酰亚胺1,8-萘二甲酰亚胺是一类良好的荧光发色体,其4位上有供电子基团的衍生物大都具有强烈的荧光,已被...  相似文献   

5.
本文提出影响芳杂环衍生物中环质子化学位移的主要因素是取代基的电子效应及取代基位置.并根据取代基团的内部结构和它所在位置的关系,推导出一套经验公式,定量地预测氮苯类、噻吩类、呋喃类、五元氮芳杂环类和氮杂萘类等化合物的15种类型约300个芳杂环衍生物中700多个环质子的化学位移,与实测值相比,偏离在±0.2ppm内的约占88%,在±0.2~±0.3ppm的约占11%,大于±0.3ppm的<1%.  相似文献   

6.
合成了含有识别基团苯硼酸和荧光基团萘的新型对-[(5-十二烷氧基-1-氧基)萘]甲基苯硼酸{p-[(5-dodecyloxy-1-oxy) naphthalene] methyl-phenylboronic acid, DNMPBA}双亲化合物; 该化合物在THF/水选择性溶剂中自组织成囊泡, 囊泡的相变温度为56.8 ℃; 当向囊泡体系加糖时, DNMPBA囊泡中的萘生色基在345 nm的荧光峰强度急剧增强; 荧光强度随添加不同糖的变化趋势为果糖>葡萄糖>麦芽糖>乙二醇. 荧光强度增强可能归因于所形成的硼酸酯减弱了DNMPBA双亲化合物中一个氧原子孤对电子对萘生色基的猝灭作用而使荧光强度重新恢复. DNMPBA囊泡与糖的相互作用导致体系荧光强度变化, 使该体系有可能应用于检测生物物质如糖的化学传感器.  相似文献   

7.
合成了含萘荧光基团的硝基取代苯腙类受体,利用紫外-可见分光光度法、荧光发射光谱法和核磁等方法研究了受体的阴离子识别与光化学传感性能. 结果表明,在DMSO有机溶剂体系中,单硝基取代受体选择性比色和荧光识别氟离子,而双硝基取代受体可以比色和荧光识别氟离子和醋酸根离子. 归因于腙=N-NH基团质子酸性的进一步增强,双硝基取代受体能够在DMSO-H2O体系中实现对氟离子的比色和荧光识别. 此类受体是有效的“off-on”型阴离子荧光传感分子.  相似文献   

8.
9,10-二(苯亚甲基-硫亚甲基)蒽的合成及其对Cu2+的识别   总被引:2,自引:0,他引:2  
荧光分子开关和分子识别是超分子化学的重要组成部分。蒽环作为一个优良的荧光基团被广泛应用于分子开关的设计及分子识别中。Resorci-narenes母体衍生物的合成研究中采用蒽环作为荧光基团已被报道多次[1-4],Luigi Fabbrizzi合成的多氨基蒽衍生物[5]对Zn2 具有良好的PET效应。蒽系荧光分子在分子逻辑门系统中日益受到了研究者的重视,de Silva等在研究中发现一蒽环化合物[6]在Mg2 作用存在OR逻辑行为。在后续研究中发现两类蒽环化合物在一定条件下分别存在AND[7]和NOR[8]逻辑行为。在分子识别的研究中,Shin-ichi Sasaki合成的含穴状…  相似文献   

9.
对-二苯氨基联二苯基硼酸对单糖的识别研究   总被引:1,自引:0,他引:1  
本文以二苯基胺和对-二溴联苯合成新型硼酸衍生物对-二苯氨基联二苯基硼酸(DBBA).用DBBA作为荧光探针,在20%的乙醇水溶液中对各种单糖,如果糖、半乳糖、葡萄糖、甘露糖等进行识别研究,并且计算了DBBA与各种单糖的结合常数.研究结果表明,该新型硼酸衍生物对果糖具有很好的选择性识别.初步探讨了DBBA与果糖、半乳糖、葡萄糖、甘露糖的识别机理,表明DBBA能够识别单糖,DBBA具有分子内电荷转移特性,它与单糖分子结合后不同程度地阻碍了其分子内的电荷转移性质.  相似文献   

10.
本文报道几种双-β-萘甲酸多次甲基二醇酯及双-β-萘基烷烃次甲基链上被极性基团取代的衍生物的合成及其荧光谱。结果表明,它们都能形成分子内激基缔合物,对于双-β-萘甲酸多次甲基二醇酯来说,其分子内激基缔合物的荧光强度与链长有关,以三次甲基链为最大。对于双-β-萘基烷烃取代衍生物来说,由于吸电子基团的引入使两个萘环的电子云密度不等,它们所形成的分子内激基缔合物的荧光峰都比未取代的1,3-双-β-萘基丙烷有所蓝移。在极性溶剂乙腈中其分子内激基缔合物的荧光峰的位置虽然不变,但IE/I2值则有所降低,表现出既不完全与激基缔合物相同,又不完全与激基复合物相同的性质。  相似文献   

11.
A simple amino acid based compound (1) containing a phenyl boronic group and pyrene fluorophore showed an enhanced fluorescence in aqueous solutions at physiological pH through suppression of the photoinduced electron transfer from pyrene to boronic acid on carbohydrate binding. The compound exhibited an interesting fluorescence change depending on pH with decreased emission intensity at acidic pH but enhanced emission intensity at basic pH unlike the fluorescent carbohydrate chemosensors using a PET process with amine and aryl-boronic acid. We have characterized a dual role of phenylboronic acid as a receptor for carbohydrates as well as a quencher for the fluorescence of pyrene fluorophore.  相似文献   

12.
We have prepared chiral fluorescent bisboronic acid sensors with 3,6-dithiophen-2-yl-9H-carbazole as the fluorophore. The thiophene moiety was used to extend the π-conjugation framework of the fluorophore in order to red-shift the fluorescence emission and, at the same time, to enhance the novel process where the fluorophore serves as the electron donor of the photoinduced electron transfer process (d-PET) of the boronic acid sensors; i.e., the background fluorescence of the sensor 1 at acidic pH is weaker compared to that at neutral or basic pH, in stark contrast to the typical a-PET boronic acid sensors (where the fluorophore serves as the electron acceptor of the photoinduced electron transfer process). The benefit of the d-PET boronic acid sensors is that the recognition of the hydroxylic acids can be achieved at acidic pH. We found that the thiophene moiety is an efficient π-conjugation linker and electron donor; as a result, the d-PET contrast ratio of the sensors upon variation of the pH is improved 10-fold when compared to the previously reported d-PET sensors without the thiophene moiety. Enantioselective recognition of tartaric acid was achieved at acid pH, and the enantioselectivity (total response K(D)I(F)(D)/K(L)I(F)(L)) is 3.3. The fluorescence enhancement (I(F)(Sample)/I(F)(Blank)) of sensor 1 upon binding with tartaric acid is 3.5-fold at pH 3.0. With the fluorescent bisboronic acid sensor 1, enantioselective recognition of mandelic acid was achieved for the first time. To the best of our knowledge, this is the first time that the mandelic acid has been enantioselectively recognized using a chiral fluorescent boronic acid sensor. Chiral monoboronic acid sensor 2 and bisboronic acid sensor 3 without the thiophene moiety failed to enantioselectively recognize mandelic acid. Our findings with the thiophene-incorporated boronic acid sensors will be important for the design of d-PET fluorescent sensors for the enantioselective recognition of α-hydroxylic acids such as mandelic acid, given that it is currently a challenge to recognize these analytes with boronic acid fluorescent molecular sensors.  相似文献   

13.
A modular approach was proposed for the preparation of chiral fluorescent molecular sensors, in which the fluorophore, scaffold, and chirogenic center can be connected by ethynyl groups, and these modules can easily be changed to other structures to optimize the molecular sensing performance of the sensors. This modular strategy to assembly chiral sensors alleviated the previous restrictions of chiral boronic acid sensors, for which the chirogenic center, fluorophore, and scaffold were integrated, thus it was difficult to optimize the molecular structures by chemical modifications. We demonstrated the potential of our new strategy by the preparation of a sensor with a larger scaffold. The photoinduced electron‐transfer (PET) effect is efficient even with a large distance between the N atom and the fluorophore core. Furthermore, the rarely reported donor‐PET (d‐PET) effect, which was previously limited to carbazole, was extended to phenothiazine fluorophore. The contrast ratio, that is, PET efficiency of the new d‐PET sensor, is increased to 8.0, compared to 2.0 with the previous carbazole d‐PET sensors. Furthermore, the ethynylated phenothiazine shows longer excitation wavelength (centered at 380 nm) and emission wavelength (492 nm), a large Stokes shift (142 nm), and high fluorescence quantum yield in aqueous solution (Φ=0.48 in MeOH/water, 3:1 v/v). Enantioselective recognition of tartaric acid was achieved with the new d‐PET boronic acid sensors. The enantioselectivity is up to 10 (ratio of the binding constants toward D ‐ and L ‐tartaric acid, kD/kL). A consecutive fluorescence enhancement/decrease was observed, thus we propose a transition of the binding stoichiometry from 1:1 to 1:2 as the analyte concentration increases, which is supported by mass spectra analysis. The boronic acid sensors were used for selective and sensitive recognition of disaccharides and glycosylated steroids (ginsenosides).  相似文献   

14.
The synthesis of poly(glyceryl glycerol) (PGG), a polymer featuring a polyethylene oxide backbone and 1,2‐diol groups in every repeating unit, is presented. PGG was prepared by monomer‐activated ring‐opening polymerization of (dl ?1,2‐isopropylidene glyceryl) glycidyl ether, introducing a functional azido‐ or bromo‐head group to each chain. The 1,2‐diol groups, which were released by acidic deprotection, readily reacted with boronic acid derivatives, enabling the attachment of functional moieties under mild aqueous conditions. PGG was conjugated to poly(l ‐lactide) (PLLA) via azide‐alkyne cycloaddition and the resulting copolymer assembled into nanoparticles of 70 nm diameter in aqueous solution. Labeling of the PGG–PLLA particles was achieved by simple mixing with a boronic acid‐functional fluorophore. The labeling efficiency was determined by fluorescence spectroscopy to be 85.5% for boronic acid‐functional rhodamine B compared with 0.2% for plain rhodamine B. The strong interaction of PGG with boronic acids is ascribed to its polyol structure. This study demonstrates the usefulness and versatility of PGG as a hydrophilic polymer for possible biomedical applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1822–1830  相似文献   

15.
The structures of thermodynamically stable aromatic boronic acid : cyclic carbohydrate chelates in aqueous alkaline media have been studied using 1H NMR spectroscopy and molecular modelling. It is found that interacting saccharides must necessarily possess a synperiplanar diol functionality for complexation to occur. While this is possible for furanose structures which tend to have a puckered planar geometry, for pyranose forms it is postulated that bis-complexation occurs with twist conformers of the pyranose ring, providing the ring has the requisite 1,2 : 3,4 polyol stereochemistry; specifically axial,equatorial : equatorial,axial or equatorial,axial : axial,equatorial orientations. In this respect it is possible to be predictive with regard to individual carbohydrate boronic acid interactions and to give reasonably comprehensive structural assignments to complexed components. In this paper twenty four polyhydroxy compounds have been screened using 1H NMR to monitor complexation along with computational techniques on a model system to substantiate proposed structures. It has been found that all of these materials interact with aromatic mono boronic acids as expected and structures for the resulting chelates are proposed.  相似文献   

16.
Arylborinic acids represent new, efficient, and underexplored hydrogen peroxide-responsive triggers. In contrast to boronic acids, two concomitant oxidative rearrangements are involved in the complete oxidation of these species, which might represent a major limitation for an efficient effector (drug or fluorophore) release. Herein, a comprehensive study of H2O2-mediated unsymmetrical arylborinic acid oxidation to investigate the factors that could selectively guide their oxidative rearrangement is described. The o-CF3 substituent was found to be an excellent directing group allowing a complete regioselectivity on borinic acid models. This result was successfully applied to synthesizing new borinic acid-based fluorogenic probes, which exclusively release the fluorescent moiety upon H2O2 treatment. These compounds maintained their superior kinetic properties compared to boronic acids, thus further enhancing the potential of arylborinic acids as valuable new H2O2-sensitive triggers.  相似文献   

17.
We developed a carbohydrate sensing material, which consists of a crystalline colloidal array (CCA) incorporated into a polyacrylamide hydrogel (PCCA) with pendent boronic acid groups. The embedded CCA diffracts visible light, and the PCCA diffraction wavelength reports on the hydrogel volume. This boronic acid PCCA responds to species containing vicinal cis diols such as carbohydrates. This PCCA photonic crystal sensing material responds to glucose in low ionic strength aqueous solutions by swelling and red shifting its diffraction as the glucose concentration increases. The hydrogel swelling results from a Donnan potential due to formation of boronate anion; the boronic acid pK(a) decreases upon glucose binding. This sensing material responds to glucose and other sugars at <50 microM concentrations in low ionic strength solutions.  相似文献   

18.
A novel approach was used to immobilize glycosylated enzymes on a glassy carbon electrode (GCE) based on the interaction of boronic acid and carbohydrate moiety within the glycoproteins. 4-Aminomethylphenylboronic acid (4-AMBA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation process of the amino-containing compound. The boronic acid group immobilized in this way could recognize glycoproteins such as glucose oxidase, horseradish peroxidase, dehydrogenase and others. X-ray photoelectron spectroscopy measurement proved the presence of a 4-AMBA monolayer on the GCE. The adsorptions of three kinds of enzymes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The activity of the immobilized horseradish peroxidase was also studied.  相似文献   

19.
Modular and modular polymer supported fluorescence photoinduced electron transfer (PET) sensors 2 and 3 with two boronic acid receptor units, a pyren-1-yl fluorophore, and hexamethylene linker show selective saccharide binding in aqueous methanolic solution at pH 8.21.  相似文献   

20.
A straightforward method for fabricating a stable and covalent carbohydrate microarray based on boronate formation between the hydroxyl groups of carbohydrate and boronic acid (BA) on the glass surface was used to identify carbohydrate-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号