首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the electrophoretic mobility of spherical particles and the electrical conductivity in salt-free concentrated suspensions including finite ion size effects. An ideal salt-free suspension is composed of just charged colloidal particles and the added counterions that counterbalance their surface charge. In a very recent paper [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960-3968] we presented a model for the equilibrium electric double layer for this kind of suspensions considering the size of the counterions, and now we extend this work to analyze the response of the suspension under a static external electric field. The numerical results show the high importance of such corrections for moderate to high particle charges, especially when a region of closest approach of the counterions to the particle surface is considered. The present work sets the basis for further theoretical models with finite ion size corrections, concerning particularly the ac electrokinetics and rheology of such systems.  相似文献   

2.
The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6 mg/g) and Se(IV) (up to 29.0 mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH(-) groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO(3) did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption.  相似文献   

3.
On the basis of the standard theory of the primary electroviscous effect in a moderately concentrated suspension of charged spherical particles in an electrolyte solution presented by Ruiz-Reina et al. (Ruiz-Reina, E.; Carrique, F.; Rubio-Hernández, F. J.; Gómez-Merino, A. I.; García-Sánchez, P. J. Phys. Chem. B 2003, 107, 9528), which is applicable for the case where overlapping of the electrical double layers of adjacent particles can be neglected, the general expression for the effective viscosity or the primary electroviscous coefficient p of the suspension is derived. This expression is applicable for a suspension of spherical particles of radius a carrying arbitrary zeta potentials zeta at the particle volume fraction phi < or = 0.3 for the case of nonoverlapping double layers, that is, at kappaalpha > 10 (where kappa is the Debye-Hückel parameter). A simple approximate analytic expression for p applicable for particles with large kappaalpha and arbitrary zeta is presented. The obtained viscosity expression is a good approximation for moderately concentrated suspensions of the particle volume fraction phi < or = 0.3, where the relative error is negligible for kappaalpha > or =100 and even at kappaalpha = 50 the maximum error is approximately 20%. It is shown that a maximum of p, which appears when plotted as a function of the particle zeta potential, is due to the relaxation effect as in the case of the electrophoresis problem.  相似文献   

4.
We study the effective screened electrostatic potential created by a spheroidal colloidal particle immersed in an electrolyte, within the mean field approximation, using Poisson-Boltzmann equation in its linear and nonlinear forms, and also beyond the mean field by means of Monte Carlo computer simulation. The anisotropic shape of the particle has a strong effect on the screened potential, even at large distances (compared to the Debye length) from it. To quantify this anisotropy effect, we focus our study on the dependence of the potential on the position of the observation point with respect with the orientation of the spheroidal particle. For several different boundary conditions (constant potential, or constant surface charge) we find that, at large distance, the potential is higher in the direction of the large axis of the spheroidal particle.  相似文献   

5.
Hiroyuki Ohshima 《Electrophoresis》2022,43(21-22):2260-2266
An analytic expression is obtained for the diffusiophoretic mobility of a charged spherical colloidal particle in a symmetrical electrolyte solution. The obtained expression, which is expressed in terms of exponential integrals, is correct to the third order of the particle zeta potential so that it is applicable for colloidal particles with low and moderate zeta potentials at arbitrary values of the electrical double-layer thickness. This is an improvement of the mobility formula derived by Keh and Wei, which is correct to the second order of the particle zeta potential. This correction, which is related to the electrophoresis component of diffusiophoresis, becomes more significant as the difference between the ionic drag coefficients of electrolyte cations and anions becomes larger and vanishes in the limit of thin or thick double layer. A simpler approximate mobility expression is further obtained that does not involve exponential integrals.  相似文献   

6.
The inverse kinetic problem of reducing sorption of molecular oxygen by a copper-containing electron-ion exchanger was formulated and solved taking into account the influence of the size of ultradisperse metal particles on the total rate of the process. These results were used to determine the inside diffusion coefficient of oxygen and rate constants for its interaction with disperse copper from the experimental kinetic curves. The diffusion coefficient obtained was compared with the result of an independent experiment. The kinetic parameters found were used to perform a theoretical analysis of the contributions of various factors influencing the rate of the process under consideration. The reason for the experimentally observed acceleration of the reducing sorption of oxygen by a high-dispersity electron-ion exchanger sample was shown to be an increase in the surface area of metal because of a decrease in the size of its particles and a comparatively high copper content in the surface layer of grains.  相似文献   

7.
The dielectric relaxation of polyelectrolyte-coated colloidal particles is examined via "exact" numerical solutions of the governing electrokinetic equations. The charged polymer coatings are characterized by a nominal charge density, thickness, and permeability. Brush-like segment density profiles are considered here, but more sophisticated segment and charge density profiles are accommodated by the model. The role of added counterions and nonspecific adsorption is considered briefly before examining how the experimentally measured conductivity and dielectric constant increments reflect the frequency of the applied electric field, the strength of the electrolyte, and characteristics of the polymer coatings, namely the charge, charge density, and permeability. Finally, a strategy is suggested by which dielectric spectroscopy and electrophoresis can be used to characterize polymer-coated particles. This approach complements experiments where electroviscous effects such as dynamic light scattering and sedimentation are weak.  相似文献   

8.
A general electroacoustic theory is presented for the macroscopic electric field in a dilute suspension of spherical colloidal particles in an electrolyte solution, which consists of the colloid vibration potential (CVP) and the ion vibration potential (IVP), induced by an oscillating pressure gradient field due to an applied sound wave. This is a unified theory that unites previous theories for CVP and those for IVP. Approximate analytic expressions are derived for CVP and IVP. The obtained IVP expression agrees with Debye's formula that is corrected by taking into account the force acting on the electrolyte ions as a result of the pressure gradient in the sound wave. The obtained CVP expression is correct to the first order of the particle zeta potential and applicable for arbitrary kappaalpha, where kappa is the Debye-Hückel parameter and alpha is the particle radius. It is found that an Onsager relation holds between CVP and dynamic electrophoretic mobility. It is also shown that the CVP from particles with very small kappaalpha approaches IVP; that is, in the limit of very small kappaalpha a particle behaves like an ion.  相似文献   

9.
The spatial distribution of colloidal particles in a confined space is frequently a key issue to many phenomena of practical significance. This problem is investigated by considering the distribution of colloidal particles in a spherical cavity under the conditions of relatively large cavities, low cavity and colloidal particles potentials, and low monovalent electrolyte and colloidal concentrations. The analytical expression for the particle-cavity pair interaction energy is derived under various surface conditions. The results obtained are used to evaluate the direct correlation functions in the hypernetted chain approximation employed for the resolution of an Ornstein-Zernike equation. For a fixed particle number concentration at the center of a cavity, we make the following conclusions: (i) the spatial distribution of particles increases in an oscillatory manner with the distance away from the cavity surface, (ii) increasing the particle-cavity pair interaction energy has the effect of reducing the free space of particles inside a cavity, and (iii) the greater the pair interaction energy between two particles, the higher the average concentration of particles.  相似文献   

10.
Heterocoagulation of cationic and carboxylated polystyrene latexes is studied for a wide range of salt concentrations by static light scattering. The weak character of the surface groups providing the charges allows variation of the relative charge of the systems. Two situations are studied: both latexes with similar surface charges and with very different ones. In both cases at low ionic concentration pure heteroaggregation takes place, whereas diffusive aggregation is observed at high kappa, above the critical coagulation concentration (C.C.C.) of both latexes. The overall rate of aggregation describes a minimum at intermediate salt concentrations when both latexes bear similar charges. The heterocoagulation rate constant decreases continuously to reach the diffusive value at high salt. An interesting behavior is observed when the latexes have very different charge. The heterocoagulation kinetic constant becomes diffusive above the C.C.C. of the less charged latex.  相似文献   

11.
In this paper the electrophoretic mobility and the electrical conductivity of concentrated suspensions of spherical colloidal particles have been numerically studied under arbitrary conditions including zeta potential, particle volume fraction, double-layer thickness (overlapping of double layers is allowed), surface conductance by a dynamic Stern layer model (DSL), and ionic properties of the solution. We present an extensive set of numerical data of both the electrophoretic mobility and the electrical conductivity versus zeta potential and particle volume fraction, for different electrolyte concentrations. The treatment is based on the use of a cell model to account for hydrodynamic and electrical interactions between particles. Other theoretical approaches have also been considered for comparison. Furthermore, the study includes the possibility of adsorption and lateral motion of ions in the inner region of the double layers (DSL model), according to the theory developed by C. S. Mangelsdorf and L. R. White (J. Chem. Soc. Faraday Trans.86, 2859 (1990)). The results show that the correct limiting cases of low zeta potentials and thin double layers for dilute suspensions are fulfilled by our conductivity formula. Moreover, the presence of a DSL causes very important changes, even dramatic, on the values of both the electrophoretic mobility and the electrical conductivity for a great range of volume fractions and zeta potentials, specially when double layers of adjacent cells overlap, in comparison with the standard case (no Stern layer present). It can be concluded that in general the presence of a dynamic Stern layer causes the electrophoretic mobility to decrease and the electrical conductivity to increase in comparison with the standard case for every volume fraction, zeta potential, and double-layer thickness.  相似文献   

12.
Heteroaggregation (or heterocoagulation) rate constants have been measured in mixtures of well-characterized colloidal particles of opposite charge with multiangle static and dynamic light scattering. This technique permits routine measurements of absolute heteroaggregation rate constants, also in the presence of homoaggregation. Particularly with multiangle dynamic light scattering, one is able to estimate absolute heteroaggregation rate constants accurately in the fast aggregation regime for the first time. Heteroaggregation rate constants have also been measured over a wide range of parameters, for example, ionic strength and different surface charge densities. Amidine latex particles, sulfate latex particles, and silica particles have been used for these experiments, and they were well characterized with respect to their charging and homoaggregation behavior. It was shown that heteroaggregation rate constants of oppositely charged particles increase slowly with decreasing ionic strength, and provided the surface charge is sufficiently large, the rate constant is largely independent of the surface charge. These trends can be well described with DLVO theory without adjustable parameters.  相似文献   

13.
14.
We studied systematically aqueous suspensions of amorphous well-characterized silica particles by potentiometric titration, electrophoretic mobility, and time-resolved light scattering. Their charging behavior and aggregation rate constants were measured as a function of pH and ionic strength in KCl electrolytes for three types of particles of approximately 30, 50, and 80 nm in diameter. The charging behavior was consistent with the basic Stern model; the silica particles carry a negative charge, and its magnitude gradually increases with increasing pH and ionic strength. On the other hand, their early-stage aggregation (or coagulation) behavior is complex. The aggregation of the largest particles shows features resembling predictions of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. On one hand, the rate constant decreases sharply with increasing pH at low ionic strengths and attains fast aggregation conditions at high ionic strengths. On the other hand, we observe a characteristic slowing down of the aggregation at low pH and high ionic strengths. This feature becomes very pronounced for the medium and the small particles, leading to a complete stabilization at low pH for the latter. Stabilization is also observed at higher pH for the medium and the small particles. From these aggregation measurements we infer the existence of an additional repulsive force. Its origin is tentatively explained by postulating hairy layers of consisting of poly(silicilic acid) chains on the particle surface.  相似文献   

15.
The equilibrium electric double layer (EDL) that surrounds colloidal particles is essential for the response of a suspension under a variety of static or alternating external fields. An ideal salt-free suspension is composed of charged colloidal particles and ionic countercharges released by the charging mechanism. Existing macroscopic theoretical models can be improved by incorporating different ionic effects usually neglected in previous mean-field approaches, which are based on the Poisson-Boltzmann equation (PB). The influence of the finite size of the ions seems to be quite promising because it has been shown to predict phenomena like charge reversal, which has been out of the scope of classical PB approximations. In this work we numerically obtain the surface electric potential and the counterion concentration profiles around a charged particle in a concentrated salt-free suspension corrected by the finite size of the counterions. The results show the high importance of such corrections for moderate to high particle charges at every particle volume fraction, especially when a region of closest approach of the counterions to the particle surface is considered. We conclude that finite ion size considerations are obeyed for the development of new theoretical models to study non-equilibrium properties in concentrated colloidal suspensions, particularly salt-free ones with small and highly charged particles.  相似文献   

16.
This paper outlines the application of a self-consistent cell-model theory of electrokinetics to the problem of determining the electrical conductivity of a dense suspension of spherical colloidal particles. Numerical solutions of the standard electrokinetic equations, subject to self-consistent boundary conditions, are implemented in formulas for the electrical conductivity appropriate to the particle-averaged cell model of the suspension. Results of calculations as a function of frequency, zeta potential, volume fraction, and electrolyte composition, are presented and discussed.  相似文献   

17.
When a sound wave is applied to a suspension of colloidal particles in an electrolyte solution, the colloid vibration potential (CVP) is produced in the suspension. The CVP is proportional to the difference between the mass density of the particles and that of the electrolyte solution. For a suspension of biological colloids such as cells, whose mass density is only slightly different from the electrolyte solution, its CVP becomes very small so that the magnitude of the ion vibration potential (IVP) of the electrolyte solution exceeds that of CVP. This causes difficulty in analyzing the CVP in biological systems. In the present paper, we show that even in such cases the phase of CVP becomes much greater than that of IVP.  相似文献   

18.
We examine the spatial distribution of fluorescent-labeled charged polystyrene (PS) particles (particle volume fraction ? = 0.0001 and 0.001, diameter d = 183 and 333 nm) added to colloidal crystals of charged silica particles (? = ?(s) = 0.035-0.05, d = 118 nm). At ?(s) = 0.05, the PS particles were almost randomly distributed in the volume-filling polycrystal structures before the grain growth process. Time-resolved confocal laser scanning microscopy observations reveal that the PS particles are swept to the grain boundaries of the colloidal silica crystals owing to grain boundary migration. PS particles with d = 2420 nm are not excluded from the silica crystals. We also examine influences of the impurities on the grain growth laws, such as the power law growth, size distribution, and existence of a time-independent distribution function of the scaled grain size.  相似文献   

19.
In this work we performed nonequilibrium Brownian dynamics (NEBD) computer simulations of highly charged colloidal particles in diluted suspension under a parabolic flow in cylindrical pores. The influence of charged and neutral cylindrical pores on the structure and rheology of suspensions is analyzed. A shear-induced disorder-order-disorder-like transition was monitored for low shear rates and small pore diameters. We calculate the concentration profiles, axial distribution functions, and axial-angular pair correlation functions to determine the structural properties at steady state for a constant shear flow for different pore sizes and flow strengths. Similar behavior has been observed in a planar narrow channel in the case of charged interacting colloidal particles (M.A. Valdez, O. Manero, J. Colloid Interface Sci. 190 (1997) 81). The mobility of the particles in the radial direction decreases rapidly with the flow and becomes practically frozen. The flow exhibits non-Newtonian shear thinning behavior due to interparticle interactions and particle-wall interaction; the apparent viscosity is lower as the pore diameter decreases, giving rise to an apparent slip in the colloidal suspension. The calculated slip velocity was higher than that obtained in a rectangular slit under shear flow.  相似文献   

20.
We present the results of Monte Carlo simulations and density functional theory treatment of interactions between spherical colloidal brushes both in implicit (good) solvent and in an explicit polymeric solution. Overall, theory is seen to be in good agreement with simulations. We find that interactions between hard-sphere particles grafted with hard-sphere chains are always repulsive in implicit solvent. The range and steepness of the repulsive interaction is sensitive to the grafting density and the length of the grafted chains. When the brushes are immersed in an explicit solvent of hard-sphere chains, a weak mid-range attraction arises, provided the length of the free chains exceeds that of the grafted chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号