首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The peristaltic motion of a non-Newtonian fluid represented by the constitutive equation for a second-order fluid was studied for the case of a planar channel with harmonically undulating extensible walls. A perturbation series for the parameter ( half-width of channel/wave length) obtained explicit terms of 0(2), 0(2Re2) and 0(1Re2) respectively representing curvature, inertia and the non-Newtonian character of the fluid. Numerical computations were performed and compared to the perturbation analysis in order to determine the range of validity of the terms.Presented at the second conference Recent Developments in Structured Continua, May 23–25, 1990, in Sherbrooke, Québec, Canada  相似文献   

2.
Zusammenfassung Der Wärmeübergang bei turbulenter Film kondensation strömenden Dampfes an einer waagerechten ebenen Platte wurde mit Hilfe der Analogie zwischen Impuls-und Wärmeaustausch untersucht. Zur Beschreibung des Impulsaustausches im Film wurde ein Vierbereichmodell vorgestellt. Nach diesem Modell wird die wellige Phasengrenze als starre rauhe Wand angesehen. Die Abhängigkeit einer Schubspannungs-Nusseltzahl von der Film-Reynoldszahl und Prandtlzahl wurde berechnet und dargestellt.
A model for turbulent film condensation of flowing vapour
The heat transfer in turbulent film condensation of flowing vapour on a horizontal flat plate was investigated by means of the analogy between momentum and heat transfer. To describe the momentum transfer in the film a four-region model was presented. With this model the wavy interfacial surface is treated as a stiff rough wall. A shear Nusselt number has been calculated and represented as a function of film Reynolds number and Prandtl number.

Formelzeichen a Temperaturleitkoeffizient - k Mischungswegkonstante - k s äquivalente Sandkornrauhigkeit - Nu x lokale Schubspannungs-Nusseltzahl,Nu x=xxv/uw - Pr Prandtlzahl,Pr=v/a - Pr t turbulente Prandtlzahl,Pr t =m/q - q Wärmestromdichte q - R Wärmeübergangswiderstand - Rf Wärmeübergangswiderstand des Films - Re F Reynoldszahl der Filmströmung - T Temperatur - U, V Geschwindigkeitskomponenten des Dampfes in waagerechter und senkrechter Richtung - u, Geschwindigkeitskomponenten des Kondensats in waagerechter und senkrechter Richtung - V Querschwankungsgeschwindigkeit des Kondensats und des Dampfes - u /gtD Schubspannungsgeschwindigkeit an der Phasengrenze für die Dampfgrenzschicht, uD =(/)1/2 - u F Schubspannungsgeschwindigkeit an der Phasengrenze für den Kondensatfilm,u F =(/)1/2 - u w Schubspannungsgeschwindigkeit an der Wand der Kühlplatte,u w =(w/)1/2 - y Wandabstand - x Wärmeübergangskoeffizient - gemittelte Kondensatfilmdicke - s Dicke der zähen Schicht der Filmströmung an der welligen Phasengrenze - 4 Dicke der zähen Schicht der Filmströmung an der gemittelten glatten Phasengrenze - Wärmeleitzahl - dynamische Viskosität - v kinematische Viskosität - Dichte - Oberflächenspannung - w Wandschubspannung - Schubspannung an der Phasengrenzfläche - m turbulente Impulsaustauschgröße - q turbulente Wärmeaustauschgröße Indizes d Wert des Dampfes - w Wert an der Wand - x lokaler Wert inx - Wert an der Phasengrenze Stoffgrößen ohne Index gelten für das Kondensat  相似文献   

3.
We consider the dynamics of roller-coaster type experimental models used as analog devices for nonlinear oscillators. It is shown how to chose the shape of the track in order to achieve a desired oscillator equation, in terms of the are length coordinate or its projection onto the horizontal. Explicit calculations are carried out for the linear oscillator, the so-called escape equation, the two-well Duffing oscillator, and the pendulum.  相似文献   

4.
By utilizing available experimental data for net energy transfer spectra for homogeneous turbulence, contributions P(, ) to the energy transfer at a wavenumber from various other wavenumbers are calculated. This is done by fitting a truncated power-exponential series in and to the experimental data for the net energy transfer T(), and using known properties of P(, ). Although the contributions P(, ) obtained by using this procedure are not unique, the results obtained by using various assumptions do not differ significantly. It seems clear from the results that for a region where the energy entering a wavenumber band dominates that leaving, much of the energy entering the band comes from wavenumbers which are about an order of magnitude smaller. That is, the energy transfer is rather nonlocal. This result is not significantly dependent on Reynolds number (for turbulence Reynolds numbers based on microscale from 3 to 800). For lower wavenumbers, where more energy leaves than enters a wavenumber band, the energy transfer into the band is more local, but much of the energy then leaves at distant wavenumbers.  相似文献   

5.
Knowles' representation theorem for harmonically time-dependent free surface waves on a homogeneous, isotropic elastic half-space is extended to include harmonically time-dependent free processes for thermoelastic surface waves in generalized thermoelasticity of Lord and Shulman and of Green and Lindsay.r , , r , , .This work was done when author was unemployed.  相似文献   

6.
Normal forms for random diffeomorphisms   总被引:1,自引:0,他引:1  
Given a dynamical system (,, ,) and a random diffeomorphism (): d d with fixed point at x=0. The normal form problem is to construct a smooth near-identity nonlinear random coordinate transformation h() to make the random diffeomorphism ()=h()–1() h() as simple as possible, preferably linear. The linearization D(, 0)=:A() generates a matrix cocycle for which the multiplicative ergodic theorem holds, providing us with stochastic analogues of eigenvalues (Lyapunov exponents) and eigenspaces. Now the development runs pretty much parallel to the deterministic one, the difference being that the appearance of turns all problems into infinite-dimensional ones. In particular, the range of the homological operator is in general not closed, making the conceptof-normal form necessary. The stochastic versions of resonance and averaging are developed. The case of simple Lyapunov spectrum is treated in detail.  相似文献   

7.
Explicit formulae for the finite strain and rotation measures are given, in the cases when either one of the infinitesimal tensors of strain and rotation vanishes. Conversely, when the finite strain or rotation measure vanishes, explicit formulae for the infinitesimal tensors of strain and rotation are also obtained.  相似文献   

8.
This paper presents a physics-oriented approach to approximate the continuum equations governing porous media flow by discrete analogs. To that end, the continuity equation and Darcys law are reformulated using exterior differential forms. This way the derivation of a system of algebraic equations (the discrete analog) on a finite-volume mesh can be accomplished by simple and elegant translation rules. In the discrete analog the information about the conductivities of the porous medium and the metric of the mesh are represented in one matrix: the discrete dual. The discrete dual of the block-centered finite difference method is presented first. Since this method has limited applicability with respect to anisotropy and non-rectangular grid blocks, the finite element dual is introduced as an alternative. Application of a domain decomposition technique yields the face-centered finite element method. Since calculations based on pressures in volume centers are sometimes preferable, a volume-centered approximation of the face-centered approximation is presented too.  相似文献   

9.
By definition, a homogeneous isotropic compressible Hadamard material has the property that an infinitesimal longitudinal homogeneous plane wave may propagate in every direction when the material is maintained in a state of arbitrary finite static homogeneous deformation. Here, as regards the wave, homogeneous means that the direction of propagation of the wave is parallel to the direction of eventual attenuation; and longitudinal means that the wave is linearly polarized in a direction parallel to the direction of propagation. In other words, the displacement is of the form u = ncos k(n · xct), where n is a real vector. It is seen that the Hadamard material is the most general one for which a longitudinal inhomogeneous plane wave may also propagate in any direction of a predeformed body. Here, inhomogeneous means that the wave is attenuated, in a direction distinct from the direction of propagation; and longitudinal means that the wave is elliptically polarized in the plane containing these two directions, and that the ellipse of polarization is similar and similarly situated to the ellipse for which the real and imaginary parts of the complex wave vector are conjugate semi-diameters. In other words, the displacement is of the form u = {S exp i(S · xct)}, where S is a complex vector (or bivector). Then a Generalized Hadamard material is introduced. It is the most general homogeneous isotropic compressible material which allows the propagation of infinitesimal longitudinal inhomogeneous plane circularly polarized waves for all choices of the isotropic directional bivector. Finally, the most general forms of response functions are found for homogeneously deformed isotropic elastic materials in which longitudinal inhomogeneous plane waves may propagate with a circular polarization in each of the two planes of central circular section of the n -ellipsoid, where is the left Cauchy-Green strain tensor corresponding to the primary pure homogeneous deformation.  相似文献   

10.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

11.
Stochastic subsurface transport theories either disregard local dispersion or take it to be constant. We offer an alternative Eulerian-Lagrangian formalism to account for both local dispersion and first-order mass removal (due to radioactive decay or biodegradation). It rests on a decomposition of the velocityv into a field-scale componentv , which is defined on the scale of measurement support, and a zero mean sub-field-scale componentv s , which fluctuates randomly on scales smaller than. Without loss of generality, we work formally with unconditional statistics ofv s and conditional statistics ofv . We then require that, within this (or other selected) working framework,v s andv be mutually uncorrelated. This holds whenever the correlation scale ofv is large in comparison to that ofv s . The formalism leads to an integro-differential equation for the conditional mean total concentration c which includes two dispersion terms, one field-scale and one sub-field-scale. It also leads to explicit expressions for conditional second moments of concentration cc. We solve the former, and evaluate the latter, for mildly fluctuatingv by means of an analytical-numerical method developed earlier by Zhang and Neuman. We present results in two-dimensional flow fields of unconditional (prior) mean uniformv . These show that the relative effect of local dispersion on first and second moments of concentration dies out locally as the corresponding dispersion tensor tends to zero. The effect also diminishes with time and source size. Our results thus do not support claims in the literature that local dispersion must always be accounted for, no matter how small it is. First-order decay reduces dispersion. This effect increases with time. However, these concentration moments c and cc of total concentrationc, which are associated with the scale below, cannot be used to estimate the field-scale concentrationc directly. To do so, a spatial average over the field measurement scale is needed. Nevertheless, our numerical results show that differences between the ensemble moments ofc and those ofc are negligible, especially for nonpoint sources, because the ensemble moments ofc are already smooth enough.  相似文献   

12.
Zusammenfassung Die Oberflächenspannung von sechs reinen Substanzen — SF6, CCl3F, CCl2F2, CClF3, CBrF3 und CHClF2 — wurde mit Hilfe einer modifizierten Kapillarmethode gemessen. Die zur Berechnung der Oberflächenspannung erforderlichen Sättigungsdichten und wurden teils aus vorhandenen Zustandsgleichungen, teils aus ebenfalls gemessenen Brechungsindizes bestimmt. Die Temperaturabhängigkeit der Oberflächenspannung läßt sich durch einen erweiterten Ansatz nach van der Waals =O (Tc-T)(1+...) darstellen, wobei bei einfachen Stoffen ein eingliedriger, bei polaren und assoziierenden Stoffen ein zweigliedriger Ansatz notwendig und ausreichend ist. Für den kritischen Exponenten der Oberflächenspannung wurde ein von der molekularen Substanz weitgehend unabhängiger Wert von =1.284±0.005 gefunden.
Temperature dependence of surface tension of pure refrigerants from triple point up to the critical point
The surface tension of six fluids (SF6, CCl3F, CCl2F2, CClF3, CBrF3, CHClF2) have been measured by means of a modified capillary rise method. The liquid vapor densities, which are needed to calculate the surface tension, have partly been determined by means of refractive indices simultaneously measured in the same apparatus. The temperature dependence of the surface tension is described by an extended van der Waals power law =O(Tc-T)(1+...). For simple fluids one term and for polar and associating fluids two terms are necessary and sufficient. The critical exponent is found to be 1.284 ± 0.005 and nearly independent of the molecular structure.

Formelzeichen a2 Laplace-Koeffizient - a Parameter - BO, Bon Koeffizient der Koexistenzkurve - g Erdbeschleunigung - H Höhe, kapillare Steighöhe - LL Lorentz-Lorenz-Funktion oder Refraktionskonstante - M molare Masse - M Zahl der Meßwerte - N Zahl der unbekannten Parameter - n Brechungsindex - p Druck - R,r Radius - s Entropie - SD Standardabweichung - T, t Temperatur - u innere Energie Griechische Formelzeichen Exponent des Laplace-Koeffizienten - Exponent der Koexistenzkurve - 2. Exponent der Oberflächenspannung - Wellenlänge des Lichts - Exponent der Oberflächenspannung - D Dipolmoment - , Dichte der Flüssigkeit bzw. des Dampfes - Oberflächenspannung - reduzierte Temperatur (1-T/Tc) - 2 gewichtete Varianz Indizes c kritischer Zustand - D Differenz - m Mittelwert - T Isotherme - t Zustand am Tripelpunkt - S Zustand am Schmelzpunkt - bezogen auf Oberfläche  相似文献   

13.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

14.
The stability of a flame front in a combustible gas mixture flow is investigated. The flame is treated as a gasdynamic discontinuity, the gas is assumed to be dynamically incompressible, and the gravity force is neglected. It is assumed that in the undisturbed state the free-stream velocity component u , tangential to the front, is nonzero and can vary along the front; the normal mixture-velocity component u n is constant along the front. A criterion distinguishing the absolute and convective instability of a skew flame front on which u =const is formulated. It is shown that the condition of instability of an inhomogeneous front on which the tangential component u (x) varies slowly coincides with the condition of absolute instability of a homogeneous front on which u is constant and equal to the u (x) minimum.  相似文献   

15.
The wisdom of classicalunified field theories in the conceptual framework of Weyl, Eddington, Einstein and Schrödinger has often been doubted and in particular there does not appear to be any empirical reason why the Einstein-Maxwell (E-M) theory needs to be geometrized. The crux of the matter is, however not whether the E-M theory is aesthetically satisfactory but whether it answers all the modern questions within the classical context. In particular, the E-M theory does not provide a classical platform from which the Dirac equation can be derived in the way Schrödinger's equation is derived from classical mechanics via the energy equation and the Correspondence Principle. The present paper presents a non-dualistic unified field theory (UFT) in the said conceptual framework as propounded by M. A. Tonnelat. By allowing the metric formds 2=g dx v x v and the non-degenerate two-formF=(1/2> l) dx vdx vto enter symmetrically into the theory we obtain a UFT which contains Einstein's General Relativity and the Born-Infeld electrodynamics as special cases. Above all, it is shown that the Dirac equation describing the electron in an external gravito-electromagnetic field can be derived from the non-dualistic Einstein equation by a simple factorization if the Correspondence Principle is assumed.  相似文献   

16.
SCHANZ  M.  ANTES  H. 《Meccanica》1997,32(3):179-186
The usual time domain Boundary Element Method (BEM) contains fundamentalsolutions which are convoluted with time-dependent boundary data andintegrated over the boundary surface. Here, a new approach for theevaluation of the convolution integrals, the so-called OperationalQuadrature Methods developed by Lubich, is presented. In thisformulation, the convolution integral is numerically approximated by aquadrature formula whose weights are determined using the Laplacetransform of the fundamental solution and a linear multisep method. Tostudy the behaviour of the method, the numerical convolution of afundamental solution with a unit step function is compared with theanalytical result. Then, a time domain Boundary Element formulationapplying the Operational Quadrature Methods is derived. For thisformulation only the fundamental solutions in Laplace domain arenecessary. The properties of the new formulation are studied with anumerical example.  相似文献   

17.
The effect of the temperature accommodation coefficient T on the relations at the Knudsen layer edge is investigated for strong evaporation using the moment method. An explicit expression for the dimensionless density as a function of the temperature and the Mach number M is obtained for 0 < T < 1. For T = 0 the entire solution is obtained in explicit form. It is shown that for = 0 and a condensation coefficient << 1 the temperature outside the Knudsen layer changes sharply as M varies from 0 to a certain value much less than unity after which the temperature ceases to depend on . For the model of specular reflection of the molecules from the surface the density and the temperature outside the Knudsen layer are found in explicit form as functions of the Mach number.  相似文献   

18.
O. Wein 《Rheologica Acta》1977,16(3):248-260
Zusammenfassung Die Rheodynamik der stationären viskometrischen Drehströmung um eine rotierende Kugel wird mit Methoden der Variationsrechnung untersucht. Neben iterativen numerischen Lösungsmethoden, die zu exakten Resultaten führen, wird auch eine approximative Ein-Gradienten-Lösung konstruiert, die durch Quadraturen dargestellt wird. Ausgehend von dieser analytischen Approximation werden einfache Methoden zur Auswertung von Experimentaldaten vorgeschlagen, die mit Hilfe von Eintauch-Rotationsviskosimetern mit kugelförmigen Meßspindeln gewonnen wurden.
Summary The rotational viscometric flow around a rotating sphere has been studied by variational methods. The exact numerical, as well as an approximate analytical solutions are given. Employing the analytical approximation, a simple method of evaluating viscometric data from immersional (portable) viscometers with a rotating sphere is proposed.

A Achsenschnitt durch den Bereich der Strömung - B - b, c anpaßbare empirische Konstanten - C Kalibrierungsoperator - D Schergeschwindigkeit der viskosimetrischen Strömung - D ij Komponenten des Deformationsgeschwindigkeitstensors - D I, I Stoffkonstanten der VF des Ellis-Modells - g metrischer Koeffizient - H() Funktional der Ein-Gradienten-Approximation, Gl. [27] - J[] energetisches Potential - J a[] Ein-Gradienten-Approximation fürJ - K Konsistenzkoeffizient, Parameter der VF des Potenzmodells - m Parameter des Ellis-Modells - M Drehmoment - n Parameter des Potenzmodells - n, n Differentialindices der VF, Gl. [20c, d] - n*,n** Differentialindices der RC, Gl. [9], [13] - r, , z polare Zylinderkoordinaten - R Spindelhalbmesser - rheometrischer Operator - S Spindeloberfläche - U(D) energetische Funktion nachBird, Gl. [20e] - v i physikalische Komponenten der Geschwindigkeit - Z() transformierte VF, Gl. [20f] - (n) durch Gl. [35] definierte Funktion - k Verhältnis der Radien von Spindel und Wand - ( durch Gl. [43] definierte Funktion - natürliche (Radial-)Koordinate - Schubspannung der viskosimetrischen Strömung - ij Komponenten des Spannungstensors - S() Spannungsprofil an der Spindeloberfläche - M Maximalspannung an der Spindeloberfläche - mittlere Spannung an der Spindeloberfläche, Gln. [3], [22] - natürliche (Meridional-) Koordinate - Winkelgeschwindigkeit in der Flüssigkeit - Winkelgeschwindigkeit der Spindelrotation - ( rheometrische Charakteristik Mit 4 Abbildungen und 3 Tabellen  相似文献   

19.
Summary The problem considered here is that of the indentation of a semi infinite, inhomogeneous rigid-plastic solid by a smooth, flat ended punch under conditions of plane strain. It is assumed that the yield stress of the solid k(x, y) has the form k 0+k(x, y) where k 0 is a constant and is small. A perturbation method of solution developed by Spencer [1] is used, and general results are obtained for arbitrary values of k(x, y). Some particular cases are then considered.  相似文献   

20.
A Capillary Microstructure of the Wetting Front   总被引:3,自引:0,他引:3  
This article reports the experimental results of a study of the wetting-front microscale structure formed only by capillary forces in homogeneous and random etched glass capillary models. In the homogeneous model, water propagates through the capillary system, evenly filling the capillaries across the direction of flow. Air is trapped by the pinch-off mechanism inside the pore bodies in the form of individual bubbles. The experiments specified three consecutive steps of the pinch-off mechanism, film flow, snap-off, and interface movement. In the random model, both the bypass and pinch-off, forming bypass/cut-off mechanism, create residual air structure. Bypass traps air inside large capillary-pore aggregates which are bounded by small-diameter capillaries in where pinch-off traps air in the adjacent pores. An analysis of the residual air distribution versus depth below the surface in the homogeneous and random micromodels made it possible to identify three successive zones, namely a transition zone, a transmission zone, and a wetting-and-front zone. In the transition zone, the residual air content increases with depth from zero to the constant value in the transmission zone where it remains practically constant. The capillary processes within the wetting-and-front combined zone govern air replacement with wetting and formation of the transmission zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号