首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electronic relaxation pathways in photoexcited nucleobases have received much theoretical and experimental attention due to their underlying importance to the UV photostability of these biomolecules. Multiple mechanisms with different energetic onsets have been proposed by ab initio calculations yet the majority of experiments to date have only probed the photophysics at a few selected excitation energies. We present femtosecond time-resolved photoelectron spectra (TRPES) of the DNA base adenine in a molecular beam at multiple excitation energies between 4.7-6.2 eV. The two-dimensional TRPES data is fit globally to extract lifetimes and decay associated spectra for unambiguous identification of states participating in the relaxation. Furthermore, the corresponding amplitude ratios are indicative of the relative importance of competing pathways. We adopt the following mechanism for the electronic relaxation of isolated adenine; initially the S(2)(ππ*) state is populated by all excitation wavelengths and decays quickly within 100 fs. For excitation energies below ~5.2 eV, the S(2)(ππ*)→S(1)(nπ*)→S(0) pathway dominates the deactivation process. The S(1)(nπ*)→S(0) lifetime (1032-700 fs) displays a trend toward shorter time constants with increasing excitation energy. On the basis of relative amplitude ratios, an additional relaxation channel is identified at excitation energies above 5.2 eV.  相似文献   

2.
Anion time-resolved photoelectron imaging has been used to investigate the electronic relaxation dynamics of C(6) (-) following excitation of the C (2)Pi(g)<--X (2)Pi(u) and 2 (2)Pi(g)<--X (2)Pi(u) 0(0) (0) transitions at 607 and 498 nm, respectively. Analysis of evolving photodetachment energy distributions reveals differing relaxation pathways from these prepared states. Specifically, the C (2)Pi(g) 0(0) level relaxes on a time scale of 620+/-30 fs to vibrationally hot ( approximately 2.0 eV) anion ground state both directly and indirectly through vibrationally excited levels of the intermediate-lying A (2)Sigma(g) (+) state that decay with a time scale of 2300+/-200 fs. In contrast, the 2 (2)Pi(g) 0(0) level relaxes much more quickly (<100 fs) to vibrationally hot ( approximately 2.5 eV) anion ground state directly and with transient population accumulation in the A (2)Sigma(g) (+), B (2)Sigma(u) (+), and C (2)Pi(g) electronic levels, as determined by spectral and time-scale analyses. This work also presents the experimental observation of the optically inaccessible B (2)Sigma(u) (+) state, which is found to have an electronic term value of 1.41+/-0.05 eV.  相似文献   

3.
Time-resolved photoelectron imaging of the 7,7,8,8-tetracyanoquinodimethane (TCNQ) radical anion is presented. Photoelectron angular distributions (PADs) are qualitatively analyzed in terms of the simple s-p model that is based on symmetry arguments. The internal conversion dynamics from the first excited state (1(2)B(3u)) to the ground state ((2)B(2g)) may be observed through temporal changes in the PADs of the spectrally overlapping photoelectron features arising from photodetachment of the ground state and the excited state. A formulism for extracting the population dynamics from the β(2) anisotropy parameter of overlapping spectroscopic features is presented. This is used to extract the lifetime of the first excited state, which is in good agreement with that observed in the time-resolved photoelectron spectra.  相似文献   

4.
Time-resolved photoelectron spectroscopy was used to obtain new information about the dynamics of electronic relaxation in gas-phase indole and 5-hydroxyindole following UV excitation with femtosecond laser pulses centred at 249 nm and 273 nm. Our analysis of the data was supported by ab initio calculations at the coupled cluster and complete-active-space self-consistent-field levels. The optically bright (1)L(a) and (1)L(b) electronic states of (1)ππ? character and spectroscopically dark and dissociative (1)πσ? states were all found to play a role in the overall relaxation process. In both molecules we conclude that the initially excited (1)L(a) state decays non-adiabatically on a sub 100 fs timescale via two competing pathways, populating either the subsequently long-lived (1)L(b) state or the (1)πσ? state localised along the N-H coordinate, which exhibits a lifetime on the order of 1 ps. In the case of 5-hydroxyindole, we conclude that the (1)πσ? state localised along the O-H coordinate plays little or no role in the relaxation dynamics at the two excitation wavelengths studied.  相似文献   

5.
The reaction dynamics of excited electronic states in nucleic acid bases is a key process in DNA photodamage. Recent ultrafast spectroscopy experiments have shown multicomponent decays of excited uracil and thymine, tentatively assigned to nonadiabatic transitions involving multiple electronic states. Using both quantum chemistry and first principles quantum molecular dynamics methods we show that a true minimum on the bright S2 electronic state is responsible for the first step that occurs on a femtosecond time scale. Thus the observed femtosecond decay does not correspond to surface crossing as previously thought. We suggest that subsequent barrier crossing to the minimal energy S2/S1 conical intersection is responsible for the picosecond decay.  相似文献   

6.
We developed a novel dynamic light scattering system to observe elastic relaxation phenomena with hyper frequency resolution. The principle of the measurement is based on the theory, which describes the dynamic structure factor of fluid under the condition of the frequency dependent compressibility. The dynamic structure factor, which is usually composed of the Brillouin and Rayleigh triplet, is modulated and shows an additional central component that directly reflects the whole aspect of the relaxation. In the experiment, the output from a frequency-doubled cw-YAG laser was incident into the liquid sample and the power spectrum of the light scattered into the backward direction was analyzed by the optical beating spectroscopy technique. The sample is liquid acetic acid that is known to show a strong ultrasonic relaxation around 1 MHz due to the molecular association process. We could find in the observed spectrum, the central component introduced by the phenomenon, whose relaxation frequency and the strength can be obtained from the width and the intensity of the observed central peak, respectively. The results show very good agreement with those previously obtained by the conventional ultrasonic spectroscopy technique.  相似文献   

7.
8.
9.
The dynamics of electronically excited states in 2-picoline is studied using femtosecond time-resolved photoelectron imaging spectroscopy. The internal conversion from the S(2) state to the vibrationally excited S(1) state is observed in real time. The secondarily populated high vibronic S(1) state deactivates further to the S(0) state. Photoelectron energy and angular distributions reveal the feature of ionization from the singlet 3p Rydberg states. In addition, variation of time-dependent anisotropy parameters indicates the rotational coherence of the molecule.  相似文献   

10.
The electronic structures of several N-substituted phthalimides have been investigated by UV photoelectron spectroscopy and outer valence Greens function calculations. Some spectra reveal the presence of photofragmentation and photoelimination processes related to the decay of the aminium radical cation. We compared the fragmentation mechanisms in the gas phase and in the solution.  相似文献   

11.
The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.  相似文献   

12.
The first study of pseudo‐bimolecular cycloaddition reaction dynamics in the gas phase is presented. We used femtosecond time‐resolved photoelectron spectroscopy (TRPES) to study the [2+2] photocycloaddition in the model system pseudo‐gem‐divinyl[2.2]paracyclophane. From X‐ray crystal diffraction measurements we found that the ground‐state molecule can exist in two conformers; a reactive one in which the vinyl groups are immediately situated for [2+2] cycloaddition and a nonreactive conformer in which they point in opposite directions. From the measured S1 lifetimes we assigned a clear relation between the conformation and the excited‐state reactivity; the reactive conformer has a lifetime of 13 ps, populating the ground state through a conical intersection leading to [2+2] cycloaddition, whereas the nonreactive conformer has a lifetime of 400 ps. Ab initio calculations were performed to locate the relevant conical intersection (CI) and calculate an excited‐state [2+2] cycloaddition reaction path. The interpretation of the results is supported by experimental results on the similar but nonreactive pseudo‐para‐divinyl[2.2]paracyclophane, which has a lifetime of more than 500 ps in the S1 state.  相似文献   

13.
The photochemistry of 2-naphthylsulfonyl azide (2-NpSO(2)N(3)) was studied by femtosecond time-resolved infrared (TR-IR) spectroscopy and with quantum chemical calculations. Photolysis of 2-NpSO(2)N(3) with 330 nm light promotes 2-NpSO(2)N(3) to its S(1) state. The S(1) excited state has a prominent azide vibrational band. This is the first direct observation of the S(1) state of a sulfonyl azide, and this vibrational feature allows a mechanistic study of its decay processes. The S(1) state decays to produce the singlet nitrene. Evidence for the formation of the pseudo-Curtius rearrangement product (2-NpNSO(2)) was inconclusive. The singlet sulfonylnitrene (1)(2-NpSO(2)N) is a short-lived species (τ ≈ 700 ± 300 ps in CCl(4)) that decays to the lower-energy and longer-lived triplet nitrene (3)(2-NpSO(2)N). Internal conversion of the S(1) excited state to the ground state S(0) is an efficient deactivation process. Intersystem crossing of the S(1) excited state to the azide triplet state contributes only modestly to deactivation of the S(1) state of 2-NpSO(2)N(3).  相似文献   

14.
Anion photoelectron spectra of Ga(2)N(-) were measured at photodetachment wavelengths of 416 nm(2.978 eV), 355 nm(3.493 eV), and 266 nm(4.661 eV). Both field-free time-of-flight and velocity-map imaging methods were used to collect the data. The field-free time-of-flight data provided better resolution of the features, while the velocity-map-imaging data provided more accurate anisotropy parameters for the peaks. Transitions from the ground electronic state of the anion to two electronic states of the neutral were observed and analyzed with the aid of electronic structure calculations and Franck-Condon simulations. The ground-state band was assigned to a transition between linear ground states of Ga(2)N(-)(X (1)Sigma(g) (+)) and Ga(2)N(X (2)Sigma(u) (+)), yielding the electron affinity of Ga(2)N, 2.506+/-0.008 eV. Vibrationally resolved features in the ground-state band were assigned to symmetric and antisymmetric stretch modes of Ga(2)N, with the latter allowed by vibronic coupling to an excited electronic state. The energy of the observed excited neutral state agrees with that calculated for the A (2)Pi(u) state, but the congested nature of this band in the photoelectron spectrum is more consistent with a transition to a bent neutral state.  相似文献   

15.
We developed a new surface-selective time-resolved nonlinear spectroscopy, femtosecond time-resolved electronic sum-frequency generation (TR-ESFG) spectroscopy, to investigate ultrafast dynamics of molecules at liquid interfaces. Its advantage over conventional time-resolved second harmonic generation spectroscopy is that it can provide spectral information, which is realized by the multiplex detection of the transient electronic sum-frequency signal using a broadband white light continuum and a multichannel detector. We studied the photochemical dynamics of rhodamine 800 (R800) at the air/water interface with the TR-ESFG spectroscopy, and discussed the ultrafast dynamics of the molecule as thoroughly as we do for the bulk molecules with conventional transient absorption spectroscopy. We found that the relaxation dynamics of photoexcited R800 at the air/water interface exhibited three characteristic time constants of 0.32 ps, 6.4 ps, and 0.85 ns. The 0.32 ps time constant was ascribed to the lifetime of dimeric R800 in the lowest excited singlet (S(1)) state (S(1) dimer) that is directly generated by photoexcitation. The S(1) dimer dissociates to a monomer in the S(1) state (S(1) monomer) and a monomer in the ground state with this time constant. This lifetime of the S(1) dimer was ten times shorter than the corresponding lifetime in a bulk aqueous solution. The 6.4 ps and 0.85 ns components were ascribed to the decay of the S(1) monomer (as well as the recovery of the dimer in the ground state). For the 6.4 ps time constant, there is no corresponding component in the dynamics in bulk water, and it is ascribed to an interface-specific deactivation process. The 0.85 ns time constant was ascribed to the intrinsic lifetime of the S(1) monomer at the air/water interface, which is almost the same as the lifetime in bulk water. The present study clearly shows the feasibility and high potential of the TR-ESFG spectroscopy to investigate ultrafast dynamics at the interface.  相似文献   

16.
The GaO and GaO2 molecules were investigated using negative ion photoelectron spectroscopy. All the photoelectron spectra showed vibrationally resolved progressions. With the aid of electronic structure calculations and Franck-Condon spectral simulations, different molecular parameters and energetics of GaO-/GaO and GaO2-/GaO2 were determined, including the electron affinity of GaO, the vibrational frequency of GaO-, and the term energy, spin-orbit splitting, and vibrational frequency for the first excited A 2PiOmega state of GaO. The GaO2- photoelectron spectra comprised three bands assigned as transitions from the linear X 1Sigma(g)+ ground state of GaO2- to three linear neutral states: the A 2Pi(g), B 2Pi(u), and C 2Sigma(u) + states. The symmetric stretch frequencies of the anion and three neutral states as well as the spin-orbit splitting of the neutral 2Pi states were determined. Electronic structure calculations found the neutral lowest energy linear structure to be only 63 meV higher than the neutral bent geometry.  相似文献   

17.
《Chemical physics letters》1985,120(2):124-128
Fluoroethylcycloheptatriene has been irradiated by pulses from a TEA CO2 laser. During and after the pulses, the hot UV absorption of the excited molecules was monitored. At very low gas pressures, time-resolved observation of the rate of unimolecular isomerization of the excited molecules was possible. By adding collision partners, stepwise collisional deactivation of excited molecules was also observed. By analysis of the transient spectra, the intra- and inter-molecular dynamics of the excited molecules was found to be quantitatively consistent with data from single-photon excitation experiments. The dependence of the observed dynamics on the laser fluence is demonstrated.  相似文献   

18.
Maiko  K.  Merzhyievskyi  D.  Piryatinski  Yu.  Obernikhina  N.  Shablykin  O.  Prostota  Ya.  Dmitruk  I.  Kachkovsky  O.  Brovarets  V. 《Structural chemistry》2021,32(3):977-987
Structural Chemistry - The simultaneous quantum-chemical and spectral investigations of the possible relaxation pathways in the excited state for the two α,ω-di-substituted polyenes were...  相似文献   

19.
20.
The structural transition between two alternate conformations of bistable RNAs has been characterized by time-resolved NMR spectroscopy. The mechanism, kinetics, and thermodynamics underlying the global structural transition of bistable RNAs were delineated. Both bistable RNA conformations and a partial unstructured RNA of identical sequence could be trapped using photolabile protecting groups. This trapping allowed for an investigation of the initial folding from an unfolded RNA to one of the preferred conformations of the bistable RNA and of the structural transitions involved. Folding of the secondary structure elements occurs rapidly, while the global structural transition of the bistable RNA occurs on a time scale of minutes and shows marked temperature dependence. Comparison of these results with bistable systems previously investigated leads to the prediction of activation enthalpies (DeltaH++) associated with global structural transitions in RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号