首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
A weight function matrix is developed for obtaining the stress singularity coefficients at the edge of a plane crack, moving uniformly at an intersonic speed while subjected to arbitrary shear loading. This is then utilised for deriving, to first order, the perturbations of these coefficients associated with a small spatially and temporally varying perturbation of its edge. The perturbation solution is employed, in conjunction with a simple fracture criterion, to investigate the stability of a uniformly moving intersonic crack, subjected to following loads.  相似文献   

2.
The mechanics of cohesive failure under mixed-mode loading is investigated for the case of a steadily propagating subsonic and intersonic dynamic crack subjected to a follower tensile and shear distributed load. The cohesive failure model chosen in this study is rate independent but accounts for the coupling between normal and tangential damage. Special emphasis is placed here on mixed-mode cases with predominantly shear loading. The analysis shows that the size of the mixed-mode cohesive zone is smaller than that obtained in the pure shear case. The relative extent of the shear and tensile cohesive damage zones depends on the crack speed and the mode mixity. In the intersonic regime, the failure process takes place exclusively in shear, even under remote mixed-mode loading conditions.  相似文献   

3.
On the dynamics of cracks in three dimensions   总被引:1,自引:0,他引:1  
We introduce a three-dimensional dynamic crack propagation law, which is derived from Hamilton's principle. The result is an extension of a previous one obtained, corresponding to the two-dimensional case. As a matter of fact, in an orthogonal plane to the crack front, the geometric condition to be satisfied over the path is the same as in two dimensions. The third mode enters only through the energy release rate. The fact that the physics of the problem is locally two dimensional is a consequence of the virtual motions allowed in the set of admissible crack configurations.  相似文献   

4.
The solution of a dynamic problem for calculation of a displacement field on a half-space surface caused by an internal mode I crack opening is presented. The problem is reduced to the system of boundary integral equations (BIEs). The equations of motion are solved with the use of Helmholtz potentials and applying Fourier integral transform. The effects of the crack size, the crack depth and the distance from the crack epicenter to the observation point on the parameters of elastic waves are investigated. It is established that the increasing of the defect size leads to narrowing bandwidth of elastic waves and to lowering of center frequency. The analysis given here can be used for identification of the crack growth during technical diagnostic of an industry objects and structural elements by AE method.  相似文献   

5.
In this paper, the concept of covering domain is introduced to develop a general expression for the Fredholm Integral Equations Method, by which elasticity problems of arbitrarily shaped bodies loaded by external forces can be solved. Some special expressions are given for a body with non-zero remote stresses, or subjected to some concentrated forces on its boundary. The relationship between the loading forces and solutions are also discussed. Some analytical solutions can be obtained for simple cases. When numerical computations are needed for the solution, the method proves to have high precision and fast convergency.  相似文献   

6.
The plastic zone of the growing mode III crack in an elastic perfectly plastic solid consists of two sectors in contact with each other. The sector closer to the crack plane, first studied analytically by Chitaley and McClintock (CM), consists of a fan of straight maximum shear stress trajectories that are focused on the crack tip. The other sector, first analyzed numerically by Dean and Hutchinson (DH), is a ‘radial’ fan of straight lines that are not focused at the crack tip or at another common point. In this paper it is shown with use of the dislocation density field that the need that the stress magnitude in the plastic wake be below the yield stress requires the existence of an unfocused fan in the DH sector. It appears unlikely that this result can be obtained without explicit use of dislocations.  相似文献   

7.
This paper is concerned with dynamic problems in fracture mechanics for elastic solids having cracks with contacting faces. The contact problem for a penny-shaped crack with a nonzero initial opening under normally incident harmonic wave is solved by the method of boundary integral equations. The solutions are compared with those that neglect the contact interaction of the crack faces. Results are presented for different values of the initial crack opening Presented at the 6th International Conference on Modern Practice in Stress and Vibration Analysis (Bath, United Kingdom, September 5–7, 2006). Published in Prikladnaya Mekhanika, Vol. 43, No. 7, pp. 125–131, July 2007.  相似文献   

8.
Micromechanics based damage models, such as the model presented in Part I of this 2 part series (Tonge and Ramesh, 2015), have the potential to suggest promising directions for materials design. However, to reach their full potential these models must demonstrate that they capture the relevant physical processes. In this work, we apply the multiscale material model described in Tonge and Ramesh (2015) to ballistic impacts on the advanced ceramic boron carbide and suggest possible directions for improving the performance of boron carbide under impact conditions. We simulate both dynamic uniaxial compression and simplified ballistic loading geometries to demonstrate that the material model captures the relevant physics in these problems and to interrogate the sensitivity of the simulation results to some of the model input parameters. Under dynamic compression, we show that the simulated peak strength is sensitive to the maximum crack growth velocity and the flaw distribution, while the stress collapse portion of the test is partially influenced by the granular flow behavior of the fully damaged material. From simulations of simplified ballistic impact, we suggest that the total amount of granular flow (a possible performance metric) can be reduced by either a larger granular flow slope (more angular fragments) or a larger granular flow timescale (larger fragments). We then discuss the implications for materials design.  相似文献   

9.
This paper deals with the antiplane magnetoelectroelastic problem of an internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane. The properties of the material such as elastic modulus, piezoelectric constant, dielectric constant, piezomagnetic coefficient, magnetoelectric coefficient and magnetic permeability are assumed in exponential forms and vary along the crack direction. Fourier transforms are used to reduce the impermeable and permeable crack problems to a system of singular integral equations, which is solved numerically by using the Gauss-Chebyshev integration technique. The stress, electric displacement and magnetic induction intensity factors at the crack tips are determined numerically. The energy density theory is applied to study the effects of nonhomogeneous material parameter β, edge conditions, location of the crack and load ratios on the fracture behavior of the internal crack.  相似文献   

10.
Zhou  Zhen-Gong  Chen  Jun-Ying  Wang  Biao 《Meccanica》2000,35(5):443-456
In this paper, the behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces is investigated by a new method for the impermeable crack face conditions. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved using the Schmidt method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of the interacting cracks and the piezoelectric constants of the material upon the stress intensity factor of the cracks.  相似文献   

11.
An integral expression that is domain independent in curvilinear coordinates and compatible with zero divergence of Eshelby's (Phil. Trans. Roy. Soc. (London) 244 (1951) 87.) energy momentum tensor was obtained from the principle of virtual work. By applying Eshelby's definition of the force on a material defect a general expression of the crack extension force for a curved crack in three dimensions, here called the F-integral, was derived from the domain independent integral expression. The F-integral is given explicitly for a number of curved cracks and found to be in agreement with previously known solutions, when available. The influence of crack surface and crack front curvature upon the various forms of the F-integral is discussed. The F-integral presented in this work is a generalisation of the J-integral (Rice, J. Appl. Mech. 35 (1968) 379.) to curved cracks in orthogonal curvilinear coordinates.  相似文献   

12.
A suite of impact experiments was conducted to assess spatial variability in the dynamic properties of tantalum, on length scales of tens of microns to a few millimeters. Two different sample types were used: tantalum processed to yield a uniform refined grain structure (grain size ∼20 μm) with a strong axisymmetric {1 1 1} crystallographic texture, and tantalum processed to yield an equiaxial structure with grain size ∼42 μm. Impact experiments were conducted loading the samples to stress levels from 6 to 12 GPa, which are well above the Hugoniot Elastic Limit (HEL), then pulling the sample into sufficient tension to produce spall. These stress levels were specifically chosen to investigate the spall behavior of tantalum at levels ranging from the incipient spall stage to significantly above the spall strength, focusing on microstructural phenomena. A recently developed spatially resolved velocity interferometer known as the line-imaging VISAR allowed the point-to-point variability of the spall strength to be determined. Specifically, we have been able to determine in real time the nucleation and growth of void defect structures that lead to the eventual spallation or delaminating of the plate. Experiments indicate that the nucleation and growth process is time-dependent and heterogeneous since a time-dependent distribution of defects is measured. This strongly suggests that the spall strength of the material is not a single-valued function. When fitted to Weibull failure statistics, the results indicate a similar mean value and variability for the spall strength of both types of tantalum. The spatial dependence of the material distension of the spalled tantalum is also deduced, in the approximation of uniaxial strain.  相似文献   

13.
The dynamic behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces subjected to the harmonic waves is investigated by a new method. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved by using Schmidt’s method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of cracks, the frequency of the incident wave, the thickness of the piezoelectric layer and the constants of the materials upon the dynamic stress intensity factor of cracks.  相似文献   

14.
In this paper, the stress and strain structures of Mode I 3-D crack in power hardening material are studied by analyzing the fundamental equations of elastic-plastic mechanics. It is shown that three regions, Z1,Z2 and Z3 can be divided in the thickness direction according to the stress characteristic. In region Z1, the stress components in the plane Perpendicular to z axis (thickness direction) can be solved first using the fundamental equations of plane strain state; in region Z3, they can be solved first by the equations of plane stress state. The region Z2 is defined as a transition layer. It is shown that the transition layer is the characteristic of Mode I 3-D crack in elastic-plastic state, and it is significant to the research on 3-D fracture. The crack tip opening displacement CTOD is chosen to describe the amplitude coefficient of the local stress field, and the distribution of CTOD in 3-D state is investigated.The project supported by National Natural Science Foundation of China.  相似文献   

15.
In this paper, the classical solution of the opening mode crack in the 90° layer of 0/90/0 laminates has been determined by means of Fourier transformations and the procedure of Copson for a pair of dual integral equations. The fracture behavior and the in situ transverse strength of the 90° layer have been quantitatively studied in graphite/epoxy laminates, based on the solution obtained above. The results show that the stress intensity factor of this kind of laminates, which is different from that of a single unidirectional 90° layer, decreases with the increase in thicknessb, or modulusE L orG LT of the 0° layer and also decreases with the decrease in the thickness of the 90° layer. So the lamination effect manifests itself and thein situ transverse strength of the 90° layer is thereby enchanced. The theoretical calculations agree with the experimental data presented by D.L. Flaggs. Supported by National Natural Science Fundation of China.  相似文献   

16.
I. David Abrahams   《Wave Motion》2002,36(4):311-333
Many problems in linear elastodynamics, or dynamic fracture mechanics, can be reduced to Wiener–Hopf functional equations defined in a strip in a complex transform plane. Apart from a few special cases, the inherent coupling between shear and compressional body motions gives rise to coupled systems of equations, and so the resulting Wiener–Hopf kernels are of matrix form. The key step in the solution of a Wiener–Hopf equation, which is to decompose the kernel into a product of two factors with particular analyticity properties, can be accomplished explicitly for scalar kernels. However, apart from special matrices which yield commutative factorizations, no procedure has yet been devised to factorize exactly general matrix kernels.

This paper shall demonstrate, by way of example, that the Wiener–Hopf approximant matrix (WHAM) procedure for obtaining approximate factors of matrix kernels (recently introduced by the author in [SIAM J. Appl. Math. 57 (2) (1997) 541]) is applicable to the class of matrix kernels found in elasticity, and in particular to problems in QNDE. First, as a motivating example, the kernel arising in the model of diffraction of skew incident elastic waves on a semi-infinite crack in an isotropic elastic space is studied. This was first examined in a seminal work by Achenbach and Gautesen [J. Acoust. Soc. Am. 61 (2) (1977) 413] and here three methods are offered for deriving distinct non-commutative factorizations of the kernel. Second, the WHAM method is employed to factorize the matrix kernel arising in the problem of radiation into an elastic half-space with mixed boundary conditions on its face. Third, brief mention is made of kernel factorization related to the problems of flexural wave diffraction by a crack in a thin (Mindlin) plate, and body wave scattering by an interfacial crack.  相似文献   


17.
利用非线性显式动力有限元程序,采用多物质流固耦合计算方法,就GBU-28钻地弹在地下坑道临界震塌爆距处爆炸时,对地下直墙拱坑道的动力响应进行数值模拟。根据围岩动力稳定性和混凝土动态强度判据,结合模拟结果,分析衬砌结构与围岩的相互作用。钻地弹在直墙圆拱断面的坑道临界震塌爆距处爆炸时:围岩处于临界破坏状态,但混凝土衬砌结构处于稳定状态;拱顶的应力峰值明显,且柱状装药情况下,爆炸近区的应力较集团装药情况下的大;拱肩位置出现应力集中;围岩与衬砌结构特征位置处的相互作用载荷与对应质点的振动速度相互耦合,基本成对应的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号