首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This article describes a simple thermal-decomposition/nitridation method for the large-scale synthesis of 1D alpha-Si(3)N(4) nanostructures, such as millimeter-scale microribbons, nanosaws, nanoribbons, and nanowires. These nanostructures are systematically investigated by checking the product deposited at different areas by using powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. Studies show that all these nanostructures have a single-crystalline nature and predominantely grow along the [011] direction. These 1D nanostructures are formed by thermal decomposition, followed by the nitridation of SiO.  相似文献   

2.
We have successfully fabricated single-crystalline CdSe nanowires, nanobelts, and sheets by a chemical vapor deposition (CVD) method assisted with laser ablation. The synthesized CdSe nanostructures have hexagonal wurtzite phase as characterized by X-ray diffraction (XRD). CdSe nanobelts can range in length from several tens to a hundred micrometers, in thickness from 40 to 70 nm, and a tapered width which is approximately 3 microm at one end and tapers off to approximately 100 nm at a catalytic gold particle. Both selected area electron diffraction (SAED) and high-resolution transmission electron microscopic (HRTEM) measurements show that the single-crystalline hexagonal belts and sheets grew along the [0.1-1.0] direction with side surface of +/-(0 0 0 1) and top surface of +/-(2 -1 -1 0). While the growth mechanism of nanobelts complies with a combination of vapor-liquid-solid (VLS) and vapor-solid (VS) processes, the formation of sheets is primarily based on the VS mechanism. For comparison, the phonon modes of CdSe nanobelts and bulk powder have been measured by surface-enhanced Raman scattering (SERS) and normal Raman scattering (NRS) spectroscopies with off- and near-resonant excitations. A blue-shift of 2.4 cm(-1) for the longitudinal optical (LO) phonon of CdSe nanobelts, relative to bulk CdSe, is attributed to a lattice contraction in the belt structure, which is confirmed by the XRD measurement. Room-temperature microphotoluminescence (PL) at approximately 1.74 eV from single CdSe nanobelts shows a 3-fold enhancement compared to that from bulk CdSe powder and displays a partial polarization dependence of emission angles.  相似文献   

3.
氧化锌纳米带的低温无催化热蒸发制备及其表征   总被引:7,自引:0,他引:7  
通过纯锌粉蒸发,在600 ℃无催化条件下成功制备了高质量的不同形貌的ZnO纳米带.该制备方法中控制产物形貌和尺寸的关键是氧、氩及锌蒸气的流速及分压.扫描电镜及高分辩透射电镜观察显示,氧化锌纳米带具有规整光滑及齿状等不同形貌,且皆为单晶,其生长由固-气机理控制.室温光致发光谱表明,齿状氧化锌纳米带在390 nm附近形成紫外发射峰;在455~495 nm时,形成绿光发射峰,该处由4个次级发射峰组成.  相似文献   

4.
一种在固体基底上制备高度取向氧化锌纳米棒的新方法   总被引:8,自引:1,他引:8  
郭敏  刁鹏  蔡生民 《化学学报》2003,61(8):1165-1168
采用廉价、低温的方法,在修饰过ZnO纳米粒子膜的ITO基底上成功制备出具有 高长径比、高度取向的ZnO纳米棒阵列,用扫描电子显微镜(SEM),X射线衍射(XRD) ,高分辨透射电子显微镜(HRTEM)以及拉曼光谱对制备出的ZnO纳米棒的结构和形貌 进行了表征,测试结果表明,ZnO纳米棒是单晶,属于六方晶系,与基底直,上仍 沿(001)晶面择优生长的特征,并且ZnO纳米棒基本上无氧空位的存在,统计结果显 示,水热反应2h后90%以上的ZnO纳米棒直径为120~190nm,长度为4μm  相似文献   

5.
Novel Zn1-xMnxSe one-dimensional nanostructures-straight nanowires (x = 0.1 and 0.3), zigzagged nanobelts (x = 0.4), and toothed nanosaws (x = 0.4)-were synthesized using the chemical vapor deposition method. They all consisted of single-crystalline wurtzite ZnSe crystals, irrespective of the Mn content. In particular, the nanosaws have a unique structure in which double-sided teeth are rooted in the nanowire core and bent so as to align as two parallel rows. The long axis is parallel to the [010] direction, and all of the teeth have the [0001] growth direction. The X-ray diffraction pattern confirms the formation of wurtzite ZnSe crystal and the decrease of the lattice constant owing to Mn doping. The Mn2+ emission at 2.1 eV (appeared below 100 K), originating from the d-d (4T1 --> 6A1) transition, proves the effective substitution of Mn2+ ions at the tetrahedral coordinate sites.  相似文献   

6.
《Chemical physics letters》2003,367(1-2):214-218
A simple physical vapor deposition technique, oxidizing W filaments and in situ evaporating via infrared irradiation heating at 950–1000 °C in air, was developed to prepare WO3 one-dimensional nanostructures on Si wafers. Most of the nanostructures were nanorods with polygonal cross-sections, tens of nanometers in width. The nanorods were single-crystalline monoclinic structure, with the axes preferentially aligned along the [1 0 0] or [0 1 0] directions. In addition, some single-crystalline nanobelts of hexagonal structure were formed, with their length directions lying along the [1 1 0] direction. The formation of two different structures is discussed based on their cell parameters.  相似文献   

7.
ZnS/CdSe core‐shell and wire‐coil nanowire heterostructures have been synthesized by chemical vapor deposition assisted with pulsed laser ablation. Measurements from high‐resolution transmission electron microscopy and selected area electron diffraction have revealed that both ZnS/CdSe core‐shell and wire‐coil nanowires are of single‐crystalline hexagonal wurtzite structures and grow along the [0001] direction. While the lattice parameters of ZnS and CdSe in the core‐shell nanowires are nearly equal to those of bulk ZnS and CdSe, change of the lattice parameters in the CdSe‐coil is attributed to the doping of Zn into CdSe, resulting in the relaxation of compressive strain at the interface between CdSe‐coil and ZnS‐wire. Composition variation across the interfacial regions in the ZnS/CdSe nanowire heterostructures ranges only 10–15 nm despite the pronounced lattice mismatch between ZnS and CdSe by ?11%. Growth mechanisms of the ZnS/CdSe nanowire heterostructures are discussed.  相似文献   

8.
Large-scale CdS nanowires with uniform diameter and high aspect ratios were synthesized using a simple solvothermal route that employed CdCl2 and S powder as starting materials, ethylenediamine (en) as the solvent. X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) images show that the products are hexagonal structure CdS nanowires with diameter of 40 nm and length up to 10 μm. Selected area electron diffraction (SAED) and high resolution TEM (HRTEM) studies indicate the single-crystalline nature of CdS nanowires with an oriented growth along the c-axis direction. The optical properties of the products were characterized by optical absorption spectra and photoluminescence spectra. Based on the results of contrastive experiments, it is found that the sulfur source and the solvent play significant roles in the formation of uniform nanowires. A possible formation mechanism of nanowires is discussed.  相似文献   

9.
The crystal structure and growth mechanism of silver nanorods prepared by a seed-mediated surfactant method using the cationic surfactant cetyltrimethylammonium tosylate (CTAT) and its wormlike micelles are characterized by conventional and high-resolution transmission electron microscopy. Depending on the nanorod orientations, two types of electron diffraction patterns are obtained from a truncated decahedral structure consisting of five crystal units packing along [111] twining planes with five [111] planes on each end and five circumferential [001] side surfaces parallel to a <110> longitudinal direction. High-resolution images of the nanorods and the corresponding Fourier transform patterns confirm the results from the morphological and diffraction analyses. The silver nanorods grow only from multiply twinned decahedral seeds, and the high selectivity of surfactant attachment results in a barrier to the transfer of silver atoms from the solution to the circumferential [100] planes. Blockage of circumferential growth causes the aspect ratio of the rod to grow.  相似文献   

10.
硼酸镁纳米带的制备、结构和生长机理   总被引:8,自引:0,他引:8  
以晶态B和纳米MgO粉末为原料, 在1100 ℃含水的气氛下反应制备了新型准一维纳米材料硼酸镁纳米带. 采用多种表征方法, 如X射线衍射(XRD), 扫描电镜(SEM), 透射电镜(TEM), 能量色散谱仪(EDS)和傅立叶红外(FT-IR)等, 研究了产物的形貌和结构. 结果表明, 除了部分附着的Mg2B2O5颗粒外, 产物主要为单晶的Mg3B2O6纳米带. 其宽度在100~200 nm, 长度达到几十微米, 生长方向大致为[010]方向. 简要讨论了硼酸镁纳米带的生长机理和反应温度对产物的影响.  相似文献   

11.
Single-crystalline Ni nanowires have been successfully fabricated with anodic aluminum oxide as template by electrodeposition. Structural characterization (X-ray diffraction, XRD, and high-resolution transmission electron microscopy, HRTEM) shows that the single-crystalline Ni nanowire has a preferred orientation along the [220] direction. The effects of electrochemical deposition conditions on the structure of Ni nanowires are systematically studied to investigate the growth mechanism. Possible reasons for the growth of the single-crystalline Ni nanowires were discussed on the basis of electrochemistry and thermodynamics. These single-crystalline Ni nanowires have exhibited excellent magnetic properties (large anisotropy, large coercivity, and high remanence). By a similar process, single-crystalline Co nanowires with hexagonal close-packed (hcp) structure were achieved, also having large anisotropy, large coercivity (1.8 kOe), and high remanence ratio (80.8%).  相似文献   

12.
Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).  相似文献   

13.
Saw-like nanostructures composed of single-crystalline ZnO nanobelts and single-crystalline ZnS nanowires have been successfully synthesized by a vapor-solid process. Several techniques, including scanning electron microscope, transmission electron microscopy, and photoluminescence spectroscopy, were used to investigate the structures, morphology, and photoluminescence properties of the products. Due to the similar crystal habits of wurtzite ZnO and ZnS with chemically active Zn-terminated (0001) and chemically inactive O-terminated (or S-terminated) (000) polar surfaces, hierarchical saw-like nanostructures were considered to be formed by the initiation of a chemically active Zn-terminated ZnO (0001) polar surface. Photoluminescence properties of the heterostructures, different from pure ZnO nanobelts or ZnS nanowires, were also studied at room temperature.  相似文献   

14.
高度取向ZnO单晶亚微米棒阵列的制备与表征   总被引:2,自引:0,他引:2  
通过低温压热的方法,在经过预先处理长满晶核的SnO2导电玻璃基底上制备出具有高度取向的ZnO亚微米棒阵列.用扫描电子显微镜(SEM)、选区电子衍射(SAED)及X射线粉末衍射(XRD),对制备出的ZnO亚微米棒的结构和形貌进行了表征.SEM测试结果表明,ZnO亚微米棒是六方型的,近乎垂直地长在基底上,棒的直径为400~500 nm,长度约为2 μm. SAED和XRD结果表明,ZnO亚微米棒为单晶,属于六方晶系,并且沿[001]方向择优取向生长.  相似文献   

15.
Formation and Structure Characterization of Flower-like ZnS Microspheres   总被引:1,自引:0,他引:1  
ZnS nanophases were synthesized through a low-temperature route using a mixed solvent, diethylenetriamine (DETA) and deionized water (DIW), as the reaction medium. The assynthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The experimental results indicate that ZnS nanophase is formed through a phase evolution of ZnS·(DETA)1/2→ ZnS.DETA→ZnS. The ZnS flower-like microspheres sized around 2μm consist of many nanobelts whose structure could be regarded as an alternative admixture of hexagonal wurtzite (WZ) and cubic zinc blende (ZB). The optical absorption measurements demonstrate that the spectral feature of the sample changes with the evolution of the phase structure.  相似文献   

16.
Aluminum nitride (AlN) nanobelts were successfully synthesized in high yield through a chloride assisted vapor-solid process. X-ray diffraction, transmission electron microscopy, and selected area electronic diffraction demonstrate that the as-prepared nanobelts are pure, structurally uniform and single crystalline, and can be indexed to hexagonal wurtzite structure. The micro observations show that there exist no defects in the obtained nanobelts. The growth direction of the nanobelts is along 0001. The frequency spectra of the relative dielectric constant and of the dielectric loss were measured in the frequency range of 50 Hz to 5 MHz. Analysis of these spectra indicates that the interface in samples has great influence on the dielectric behavior of samples. As compared with AlN micropowders, AlN nanobelts have much higher relative dielectric constant, especially at low frequencies at room temperature.  相似文献   

17.
Mass production of quasi-one-dimensional gallium oxide nanobelts is accomplished through graphite-thermal reduction of a mixture of gallium oxide powders and SnO2 nanopowders under controlled experimental conditions. Sn nanoparticles are located at or close to the tips of the nanobelts and served as the catalyst for the nanobelt growth by a vapor-liquid-solid mechanism. The morphology and microstructure of the nanobelts were characterized by scanning electron microscopy and high-resolution transmission electron microscopy. The Ga2O3 nanobelts grow along the [104] direction, the widths ranged from several tens to several hundreds of nanometers, and the lengths ranged from several tens to several hundreds of micrometers. The growth of Ga2O3 nanobelts is initiated by Sn nanoparticles via a catalyst-assisted vapor-liquid-solid process, which makes it possible to control the sizes of Ga2O3 nanobelts.  相似文献   

18.
A novel bat-like ZnO nanostructure was synthesized on the silicon substrate by simple ther-mal evaporation of zinc powders without any catalyst. Each bat-like nanorod ("nanobat") is composed of a hexagonal head, a continuous neck and a thin handle. High-resolution transmission electron microscopy and selected area electron di raction results reveal the single-crystalline feature and the growing direction along [0001] of the nanobat. The vapor-solid mechanism was found suitable to explain the growth process of the nanobat and a schematic model was proposed in detail based on the experimental results.  相似文献   

19.
大面积Bi单晶纳米线阵列的制备   总被引:1,自引:1,他引:0  
在有序的氧化铝模板(AAO)的孔洞中, 采用电化学沉积工艺成功地制备了准金属Bi纳米线有序阵列. 使用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)及高分辨电子显微镜(HRTEM)对样品的结构和形貌进行了表征. XRD结果表明, 所制备的铋样品为六方相, 且沿[110]方向有很好的生长取向; FE-SEM图片清晰地说明铋纳米线阵列是大面积、填充率高和高度有序的; TEM的结果显示纳米线直径均匀、表面光滑且长径比大; HRTEM图片中清晰的晶格条纹和选区电子衍射(SAED)结果表明纳米线是单晶.  相似文献   

20.
Bi2Se3 nanosheets and nanotubes were prepared by a hydrothermal co-reduction method at 150, 180, 200, and 210 °C. Bi2Se3 nanosheets, nanobelts and nanotubes were obtained. The Bi2Se3 nanoflakes are 50-500 nm in width and 2-5 nm in thickness. The Bi2Se3 nanotubes are 5-10 nm in diameter, 80-120 nm in length, and 1.3 nm in wall thickness. X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and electron diffraction were employed to characterize the products. Experimental results showed that the nanosheets and the nanotubes are hexagonal in structure with a=4.1354 Å and c=27.4615 Å. A possible formation and crystal growth mechanism of Bi2Se3 nanostructures is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号