首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new Os-containing, pillared perovskite, La5Os3MnO16, has been synthesized by solid state reaction in sealed quartz tubes. This extends the crystal chemistry of these materials which had been known only for Mo and Re, previously. The crystal structure has been characterized by X-ray and neutron powder diffraction and is described in space group C-1 with parameters a=7.9648(9) Å; b=8.062(1) Å; c=10.156(2) Å, α=90.25(1)°, β=95.5(1)°; γ=89.95(2)°, for La5Os3MnO16. The compound is isostructural with the corresponding La5Re3MnO16 phase. A very short Os-Os distance of 2.50(1) Å was found in the dimeric pillaring unit, Os2O10, suggestive of a triple bond as demanded by electron counting. Nearly spin only values for the effective moment for Os5+ () and Mn2+ () were derived from magnetic susceptibility data. Evidence for magnetic transitions was seen near ∼180 and 80 K. Neutron diffraction data indicate that Tc is 170(5) K. The magnetic structure of La5Os3MnO16 at 7 K was solved revealing that Os5+ and Mn2+ form ferrimagnetically coupled layers with antiferromagnetic interlayer ordering. The ordered moments are for Mn2+ and for Os5+, which are reduced from the respective spin only values of 5.0 and . The observation of net ferrimagnetic (antiparallel) intraplanar coupling between Os5+(t2g3) and Mn2+(t2g3eg2) is interesting as it appears to contradict the Goodenough-Kanamori rules for 180° superexchange.  相似文献   

2.
A novel tin(II) phenylbis(phosphonate) compound has been synthesized hydrothermally and its structure has been determined by single crystal X-ray diffraction. The structure is monoclinic, space group P21/c (no. 14), a=4.8094(4), b=16.2871(13), ; β=106.292(6)°, , Z=2. The three-dimensional structure consists of 3-coordinated tin and 4-coordinated phosphorus double layers separated (pillared) by phenyl rings. These phenyl rings are placed 4.8 Å apart along the a-axis in the structure resulting in lower surface area (∼14 m2/g). The porosity has been increased by replacing phenyl groups by methyl groups (∼31 m2/g).  相似文献   

3.
A series of 25 members of the 1:3 ordered perovskite family of the type Ba4−xSrxNaSb3O12 has been synthesized and their structures determined using synchrotron X-ray and neutron powder diffraction techniques. At room temperature the sample Ba4NaSb3O12 has a cubic structure in space group with a=8.2821(1) Å, where the Na and Sb cations are ordered in the octahedral sites but there is no tilting of the (Na/Sb)O6 octahedra. As the average size of the A-site cation decreases, through the progressive replacement of Ba by Sr, tilting of the octahedra is introduced firstly lowering the symmetry to tetragonal in P4/mnc then to orthorhombic in Cmca and ultimately a monoclinic structure in P21/n as seen for Sr4NaSb3O12 with a=8.0960(2) Å, b=8.0926(2) Å, c=8.1003(1) Å and β=90.016(2)°. The powder neutron diffraction studies show that the orthorhombic and tetragonal phases in Cmca and P4/mnc co-exist at room temperature for samples with x between 1.5 and 2.  相似文献   

4.
The homogeneity range of the Ca3Co2-vMnvO6 solid-solution phase covers the entire composition interval from v=0 to 1. A systematic powder X-ray and neutron diffraction, magnetic susceptibility, and magnetization study has been carried out to investigate effects of the Mn-for-Co substitution on structural and magnetic properties. The Mn substitution concerns primarily only the octahedral Co1 site of the Ca3Co1Co2O6 crystal structure, whereas the trigonal-prismatic Co2 site structurally is left essentially unaffected. The Ca3Co2-vMnvO6 crystal structure belongs to space group with unit-cell dimensions (in hexagonal setting) 9.084?a?9.134 Å and 10.448?c?10.583 Å. A cut through the magnetic phase diagram at 10 K shows a ferrimagnetic domain for 0?v<∼0.3 and an antiferromagnetic domain for ∼0.50<v<∼1. The magnetic ordering temperatures are quite low (<∼25/18 K), and even so further magnetic transitions appear to take place at still lower temperature. The legitimity and reliability of the different indicators used to establish the magnetic transitions, their individual accuracy, and mutual consistency are briefly discussed. Variable parameters of the crystal and magnetic structures of Ca3Co11-vMnvCo2O6 are determined and their variation with v is briefly discussed in relation to chemical bonding. The magnetic structure in the ferrimagnetic region is essentially the same as that of the pristine v=0 phase, but since the moments at the Co2 site decrease and those at the (Co1,Mn) site increase with increasing v; characteristic traits of ferrimagnetism in magnetic susceptibility and magnetization gradually disappear. The magnetic arrangement in the antiferromagnetic region is characterized by differently sized moments at the (Co1,Mn) and Co2 sites, moments at adjacent sites in each of these sublattices being oppositely oriented along [001].  相似文献   

5.
The crystal and magnetic structures of the brownmillerite material, Ca2Fe1.039(8)Mn0.962(8)O5 were investigated using powder X-ray and neutron diffraction methods, the latter from 3.8 to 700 K. The compound crystallizes in Pnma space group with unit cell parameters of a=5.3055(5) Å, b=15.322(2) Å, c=5.4587(6) Å at 300 K. The neutron diffraction study revealed the occupancies of Fe3+ and Mn3+ ions in both octahedral and tetrahedral sites and showed some intersite mixing and a small, ∼4%, Fe excess. While bulk magnetization data were inconclusive, variable temperature neutron diffraction measurements showed the magnetic transition temperature to be 407(2) K below which a long range antiferromagnetic ordering of spins occurs with ordering wave vector k=(000). The spins of each ion are coupled antiferromagnetically with the nearest neighbors within the same layer and coupled antiparallel to the closest ions from the neighboring layer. This combination of intra- and inter-layer antiparallel arrangement of spins forms a G-type magnetic structure. The ordered moments on the octahedral and tetrahedral sites at 3.8 K are 3.64(16) and 4.23(16) μB, respectively.  相似文献   

6.
Four new compounds La5Re3MgO16 La5Re3FeO16 La5Re3CoO16 La5Re3NiO16 have been prepared by solid-state reaction and characterized by X-ray and neutron powder diffraction and SQUID magnetometry. Rietveld refinement revealed that the four compounds are isostructural with La5Re3MnO16 and crystallize in space group with cell parameters a=7.9370(3), 7.9553(5), 7.9694(7), and 7.9383(4) Å; b=7.9998(3), 7.9960(6), 8.0071(8), and 7.9983(5) Å; c=10.1729(4), 10.1895(7), 10.182(1), and 10.1732(6) Å; α=90.190(3)°, 90.270(3)°, 90.248(4) °, 90.287(3)°; β=94.886(2)°, 95.082(3)°, 94.980(4)°, 94.864(3)°; γ=89.971(4)°, 90.001(5)°, 89.983(6)°, 89.968(4)° for Mg, Fe, Co, and Ni, respectively. The structures are related to a layered perovskite. The layers of corner-sharing octahedra Re5+M2+O6 (M2+=Mg, Fe, Co, Ni) are pillared by diamagnetic edge-sharing octahedra dimers, Re2O10, involving a Re=Re double bond. Three crystallographically independent lanthanum atoms occupy the three-dimensional interstices. All compounds obey the Curie-Weiss law at sufficiently high temperatures with Curie constants or effective magnetic moments near the expected values for the combination of Re5+(S=1) and M2+(S=0, 2, 3/2, 1 for Mg, Fe, Co, and Ni, respectively). Weiss constants, θC, are negative (−575, −84, −71, and −217 K for Mg, Fe, Co, and Ni, respectively) indicating the predominance of antiferromagnetic exchange coupling. The phases for M=Fe, Co and Ni show long-range order at 155, 33, 36 and 14 K, respectively. Neutron diffraction discloses a magnetic structure for the Fe series member consisting of ferrimagnetic perovskite layers coupled antiparallel along the stacking c-axis, direction which is consistent with the magnetic structure found recently for La5Re3MnO16.  相似文献   

7.
The crystal and magnetic structures of the hybrid organic-inorganic layer compound Fe[(CD3PO3)(D2O)] have been studied by neutron powder diffraction as a function of temperature down to 1.5 K. The neutron diffraction pattern recorded at 200 K shows that the fully deuterated compound crystallizes in one of the two known forms of the undeuterated Fe[(CH3PO3)(H2O)]. The crystal structure is orthorhombic, space group Pmn21, with the following unit-cell parameters: a=5.7095(1) Å, b=8.8053(3) Å and c=4.7987(1) Å; Z=2. The crystal structure remains unchanged on cooling from 200 to 1.5 K. Moreover, at low temperature, Fe[(CD3PO3)(D2O)] shows a commensurate magnetic structure (k=(0,0,0)). As revealed by bulk susceptibility measurements on Fe[(CH3PO3)(H2O)], the magnetic structure corresponds to a canted antiferromagnet with a critical temperature TN=25 K. Neutron powder diffraction reveals that below TN=23.5 K the iron magnetic moments in Fe[(CD3PO3)(D2O)] are antiferromagnetically coupled and oriented along the b-axis, perpendicular to the inorganic layers. No ferromagnetic component is observable in the neutron powder diffraction experiment, due to its too small value (<0.1μB).  相似文献   

8.
9.
Powder neutron diffraction studies show that CaLaMnMoO6 double perovskite crystallizes in monoclinic P21/n, with a=5.56961(9), b=5.71514(9), and β=90.043(1)°. Mn and Mo occupy the 2c and 2d positions, respectively, with 6.0(4)% Mn/Mo anti-site mixing. Temperature-dependent magnetic susceptibility measurements reveal that CaLaMnMoO6 is ferrimagnetic, with TN=92(3) K, below which large magnetic frustration is detected. The zero-field magnetic moment measured at 5 K is about 1.2 μB, comparable to that of ALaMnMoO6 (A=Ba and Sr), but much lower than expected for antiparallel ordering of formally Mn2+ (d5) and Mo5+ (d1). Moreover, no long-range magnetic ordering is observed in neutron diffraction data down to 4 K. The magnetic frustration is discussed in the framework of nearest-neighbors next-nearest-neighbors magnetic frustration.  相似文献   

10.
A new family of anhydrous sulfates, A2+Mn5(SO4)6 (A=Pb, Ba, Sr) is reported. The crystal structures of PbMn5(SO4)6 and SrMn5(SO4)6 are solved by powder X-ray and neutron diffraction. BaMn5(SO4)6 is isostructural. PbMn5(SO4)6 crystallizes with symmetry and unit cell parameters of a=14.551(1) Å and c=7.535(1) Å. The structure has rich features, including dimers of face-sharing MnO6 octahedra, and two complementary triangular layers of Mn atoms. All compounds undergo a magnetic ordering transition at 10 K, below which, the magnetic susceptibility of the compounds varies systematically with the radius of the non-magnetic cation. Low temperature neutron diffraction shows that the complementary triangular layers result in a ferrimagnet with a net moment corresponding to one high spin Mn2+ per unit cell, correlating well with the magnetization data. The non-magnetic variant PbMg5(SO4)6 is also reported.  相似文献   

11.
Ba3MgSi2O8, a phosphor host examined for use in white-light devices and plant-growth lamps, was synthesized at 1225 °C in air. Its crystal structure has been determined and refined by a combined powder X-ray and neutron Rietveld method (, Z=3, a=9.72411(3) Å, c=7.27647(3) Å, V=595.870(5) Å3; Rp/Rwp=3.79%/5.03%, χ2=4.20). Superstructure reflections, observed only in the neutron diffraction data, provided the means to establish the true unit cell and a chemically reasonable structure. The structure contains three crystallographically distinct Ba atoms—Ba1 resides in a distorted octahedral site with S6 () symmetry, Ba2 in a nine-coordinate site with C3 (3) symmetry, and Ba3 in a ten-coordinate site with C1 (1) symmetry. The Mg atoms occupy distorted octahedral sites, and the Si atom occupies a distorted tetrahedral site.  相似文献   

12.
The skutterudite-related material CoGe1.5Te1.5 has been synthesised and structurally characterised by powder neutron diffraction. Analysis of the high-resolution powder neutron diffraction data indicates that the structure of CoGe1.5Te1.5 retains the a+a+a+ tilt system of the ideal skutterudite structure, while the anions are ordered in layers perpendicular to the [111] direction of the skutterudite unit cell. This anion ordering results in a lowering of the symmetry from cubic to rhombohedral (space group , a=12.3270(5) and c=15.102(1) Å at 293 K). The electrical transport properties have been investigated using four-probe resistivity and Seebeck coefficient measurements. The temperature dependence of the electrical resistivity and the magnitude of the Seebeck coefficient indicate that CoGe1.5Te1.5 is an n-type semiconductor.  相似文献   

13.
A complex perovskite with composition Ca3Fe2WO9 has been synthesised, and the temperature evolution of nuclear and magnetic structures investigated by neutron powder diffraction. It was shown that at room temperature this compound adopts a monoclinic perovskite structure belonging to space group P121/n1 (, , ), β=90.04(2)°). The partial B-site ordering, of the Fe+3 and W+6 cations, at (2c) and (2d) sites was determined. At low temperatures the magnetic diffraction peaks were registered and a possible model for the magnetic structure was proposed in accordance with the ferrimagnetic properties of the title compound. The magnetic structure is defined by a propagation vector k=(1/2,1/2,0) and can be described as an array of ferromagnetic (20−1) layers, which couple antiferromagnetically to each other. All the Fe moments within a layer are aligned parallel (or anti-parallel) to the c-axis. The structural and magnetic features of this compound are discussed and compared with those of some other quaternary oxides A3Fe2WO9 (A=Ba, Sr, Pb).  相似文献   

14.
The magnetic and transport properties of a hexagonal cobaltite related to the perovskite structure have been studied. By combining transmission electron microscopy, X-ray powder diffraction and iodometric titration, it is found that Ba0.9CoO2.6 crystallizes in the 12H structure [P63/mmc, a=5.6612 (1) Å and c=28.4627(8) Å]. Interestingly, this compound is a ferromagnet with a Curie temperature TC=50 K and a saturation magnetization . This value is smaller than expected from the effective paramagnetic moment, μeff=3.7μB/Co, corresponding to an average spin per Co, from which one would expect . This suggests either a canted structure or a strong local magnetic anisotropy related to the crystal field of the CoOn polyhedra. A clear transition in the electrical resistivity is found at TC consistent with a spin scattering reduction as the sample becomes ferromagnetic. The spin-charge coupling is evidenced by the large negative magnetoresistance effect optimum near TC=50 K, with .  相似文献   

15.
We report on the preparation and characterization of the Ca(Cr0.5Mo0.5)O3 perovskite, obtained in the search of the hypothetical double perovskite Ca2CrMoO6. This material was prepared in polycrystalline form by solid state reaction in H2/Ar flow. It has been studied by X-ray and neutron powder diffraction (NPD) and magnetic measurements. Ca(Cr0.5Mo0.5)O3 crystallizes in the orthorhombic Pbnm (No. 62) space group, with the unit-cell parameters a=5.4110 (4) Å, b=5.4795 (5) Å, c=7.6938 (6) Å. There is a complete disordering of Cr3+ and Mo5+ over the B-site of the perovskite, and the (Cr,Mo)O6 octahedra are tilted by 12.4° in order to optimize the Ca-O bond lengths. The magnetic susceptibility is characteristic of a ferrimagnetic behavior, with TC=125 K, and a small saturation magnetization at T=5 K, of 0.05 μB/f.u.  相似文献   

16.
Reported are the syntheses, crystal structure determinations from single-crystal X-ray diffraction, and magnetic properties of two new ternary compounds, Eu11Cd6Sb12 and Eu11Zn6Sb12. Both crystallize with the complex Sr11Cd6Sb12 structure type—monoclinic, space group C2/m (no. 12), Z=2, with unit cell parameters a=31.979(4) Å, b=4.5981(5) Å, c=12.3499(14) Å, β=109.675(1)° for Eu11Zn6Sb12, and a=32.507(2) Å, b=4.7294(3) Å, c=12.4158(8) Å, β=109.972(1)° for Eu11Cd6Sb12. Their crystal structures are best described as made up of polyanionic and ribbons of corner-shared ZnSb4 and CdSb4 tetrahedra and Eu2+ cations. A notable characteristic of these structures is the presence of Sb-Sb interactions, which exist between two tetrahedra from adjacent layers, giving rise to unique channels. Detailed structure analyses shows that similar bonding arrangements are seen in much simpler structure types, such as Ca3AlAs3 and Ca5Ga2As6 and the structure can be rationalized as their intergrowth. Temperature-dependent magnetization measurements indicate that Eu11Cd6Sb12 orders anti-ferromagnetically below 7.5 K, while Eu11Zn6Sb12 does not order down to 5 K. Resistivity measurements confirm that Eu11Cd6Sb12 is poorly metallic, as expected for a Zintl phase.  相似文献   

17.
New skutterudite compounds CaxCo4Sb12 (0<x?0.2) have been prepared by traditional metallurgical synthesis. The compounds have been characterized by X-ray powder diffraction (XRD), electron probe microanalysis (EPMA) and neutron powder diffraction. Rietveld refinement of the structures against neutron powder diffraction data (on Ca0.1Co4Sb12, , a=9.0429 Å, χ2=1.55; wRp=1.52) enabled the location of Ca in the voids of the skutterudite structure to be verified. The large displacement ellipsoid for Ca is consistent with “rattling” in the cage of the crystalline structure. XRD combined with EPMA analyses showed that the maximum occupancy of Ca atoms is about 0.2.  相似文献   

18.
The crystal structure of Na3RuO4 determined by powder neutron diffraction is reported. The structure consists of isolated tetramers of edge sharing RuO6 octahedra in the ab plane, creating isolated four-member plaquettes of Ru atoms comprised of two equilateral triangles sharing an edge. Magnetic susceptibility measurements reveal an antiferromagnetic transition at ∼29 K, with . Neutron diffraction data indicate the onset of three-dimensional magnetic ordering at 29 K.  相似文献   

19.
The anion-excess ordered fluorite-related phase Ba4Bi3F17 has been synthesized by a solid state reaction of BaF2 and BiF3 at 873 K. The crystal structure of Ba4Bi3F17 has been studied using electron diffraction and X-ray powder diffraction (a=11.2300(2) Å, c=20.7766(5) Å, S.G. , RI=0.020, RP=0.036). Interstitial fluorine atoms in the Ba4Bi3F17 structure are considered to form isolated cuboctahedral 8 : 12 : 1 clusters. The structural relationship between Ba4Bi3F17 and similar rare-earth-based phases is discussed.  相似文献   

20.
Ba11W4O23 was synthesized at 1300 °C, followed by quenching with liquid nitrogen. The crystal structure, which was known to be cryolite-related but has remained unclear, was initially determined by single-crystal X-ray diffraction for the isostructural Ru-substituted compound Ba11(W3.1Ru0.9)O22.5, which was discovered during exploratory synthesis in the Ba-Ru-O system. The structure of Ba11W4O23 was refined by a combined powder X-ray and neutron Rietveld method (Fd-3m, a=17.1823(1) Å, Z=8, Rp=3.09%, Rwp=4.25%, χ2=2.8, 23 °C). The structure is an example of A-site vacancy-ordered 4×4×4 superstructure of a simple perovskite ABO3, and it may be written as (Ba1.750.25)BaWO5.750.25, emphasizing vacancies on both metal and anion sites. The local structure of one of two asymmetric tungsten ions is the WO6 octahedron, typical of perovskite. The other tungsten, however, is surrounded by oxygen and anionic vacancies statistically distributed over three divided sites to form 18 partially occupied oxygen atoms (∼30% on average), represented as WO18/3. The A-site cation-vacancies are ordered at the 8a (, , ) site in between adjoining WO18/3 polyhedra which form 1-D arrangements along [110] and equivalent directions. In situ high-temperature XRD data have shown that the quenched Ba11W4O23 at room temperature is isostructural to the high-temperature phase at 1100 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号