首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discrete dislocation simulations of two boundary value problems are used as numerical experiments to explore the extent to which the nonlocal crystal plasticity theory of Gurtin (J. Mech. Phys. Solids 50 (2002) 5) can reproduce their predictions. In one problem simple shear of a constrained strip is analyzed, while the other problem concerns a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear. In the constrained layer problem, boundary layers develop that give rise to size effects. In the composite problem, the discrete dislocation solutions exhibit composite hardening that depends on the reinforcement morphology, a size dependence of the overall stress-strain response for some morphologies, and a strong Bauschinger effect on unloading. In neither problem are the qualitative features of the discrete dislocation results represented by conventional continuum crystal plasticity. The nonlocal plasticity calculations here reproduce the behavior seen in the discrete dislocation simulations in remarkable detail.  相似文献   

2.
Discrete dislocation plasticity models and strain-gradient plasticity theories are used to investigate the role of interfaces in the elastic–plastic response of a sheared single crystal. The upper and lower faces of a single crystal are bonded to rigid adherends via interfaces of finite thickness. The sandwich system is subjected to simple shear, and the effect of thickness of crystal layer and of interfaces upon the overall response are explored. When the interface has a modulus less than that of the bulk material, both the predicted plastic size effect and the Bauschinger effect are considerably reduced. This is due to the relaxation of the dislocation stress field by the relatively compliant surface layer. On the other hand, when the interface has a modulus equal to that of the bulk material a strong size effect in hardening as well as a significant reverse plasticity are observed in small specimens. These effects are attributed to the energy stored in the elastic fields of the geometrically necessary dislocations (GNDs).  相似文献   

3.
4.
5.
It is a well known and important problem in the aircraft engine industry that alloy Ti-6242 shows a significant reduction in fatigue life, termed dwell debit, if a stress dwell is included in the fatigue cycle, whereas Ti-6246 does not; the mechanistic explanation for the differing dwell debit of these alloys has remained elusive for decades. In this work, crystal plasticity modelling has been utilised to extract the thermal activation energies for pinned dislocation escape for both Ti alloys based on independent experimental data. This then allows the markedly different cold creep responses of the two alloys to be captured accurately and demonstrates why the observed near-identical rate sensitivity under non-dwell loading is entirely consistent with the dwell behaviour. The activation energies determined are then utilised within a recently developed thermally-activated discrete dislocation plasticity model to predict the strain rate sensitivities of the two alloys associated with nano-indentation into basal and prism planes. It is shown that Ti-6242 experiences a strong crystallographic orientation-dependent rate sensitivity while Ti-6246 does not which is shown to agree with recently published independent measurements; the dependence of rate sensitivity on indentation slip plane is also well captured. The thermally-activated discrete dislocation plasticity model shows that the incorporation of a stress dwell in fatigue loading leads to remarkable stress redistribution from soft to hard grains in the classical cold dwell fatigue rogue grain combination in alloy Ti-6242, but that no such load shedding occurs in alloy Ti-6246. The key property controlling the behaviour is the time constant of the thermal activation process relative to that of the loading. This work provides the first mechanistic basis to explain why alloy Ti-6242 shows a dwell debit but Ti-6246 does not.  相似文献   

6.
A discrete mechanics approach to dislocation dynamics in BCC crystals   总被引:2,自引:0,他引:2  
A discrete mechanics approach to modeling the dynamics of dislocations in BCC single crystals is presented. Ideas are borrowed from discrete differential calculus and algebraic topology and suitably adapted to crystal lattices. In particular, the extension of a crystal lattice to a CW complex allows for convenient manipulation of forms and fields defined over the crystal. Dislocations are treated within the theory as energy-minimizing structures that lead to locally lattice-invariant but globally incompatible eigendeformations. The discrete nature of the theory eliminates the need for regularization of the core singularity and inherently allows for dislocation reactions and complicated topological transitions. The quantization of slip to integer multiples of the Burgers’ vector leads to a large integer optimization problem. A novel approach to solving this NP-hard problem based on considerations of metastability is proposed. A numerical example that applies the method to study the emanation of dislocation loops from a point source of dilatation in a large BCC crystal is presented. The structure and energetics of BCC screw dislocation cores, as obtained via the present formulation, are also considered and shown to be in good agreement with available atomistic studies. The method thus provides a realistic avenue for mesoscale simulations of dislocation based crystal plasticity with fully atomistic resolution.  相似文献   

7.
We derive a three-dimensional constitutive theory accounting for length-scale dependent internal residual stresses in crystalline materials that develop due to a non-homogeneous spatial distribution of the excess dislocation (edge and screw) density. The second-order internal stress tensor is derived using the Beltrami stress function tensor φ that is related to the Nye dislocation density tensor. The formulation is derived explicitly in a three-dimensional continuum setting for elastically isotropic materials. The internal stresses appear as additional resolved shear stresses in the crystallographic visco-plastic constitutive law for individual slip systems. Using this formulation, we investigate two boundary value problems involving single crystals under symmetric double slip. In the first problem, the response of a geometrically imperfect specimen subjected to monotonic and cyclic loading is investigated. The internal stresses affect the overall strengthening and hardening under monotonic loading, which is mediated by the severity of initial imperfections. Such imperfections are common in miniaturized specimens in the form of tapered surfaces, fillets, fabrication induced damage, etc., which may produce strong gradients in an otherwise nominally homogeneous loading condition. Under cyclic loading the asymmetry in the tensile and compressive strengths due to this internal stress is also strongly influenced by the degree of imperfection. In the second example, we consider simple shear of a single crystalline lamella from a layered specimen. The lamella exhibits strengthening with decreasing thickness and increasing lattice incompatibility with shearing direction. However, as the thickness to internal length-scale ratio becomes small the strengthening saturates due to the saturation of the internal stress.Finally, we present the extension of this approach for crystalline materials exhibiting elastic anisotropy, which essentially depends on the appropriate Green function within φ.  相似文献   

8.
9.
Plastic size effect analysis of lamellar composites consisting of elastic and elastic-plastic layers is performed using a discrete dislocation plasticity approach, which is based on applying periodic homogenization to the superposition method for discrete dislocation plasticity. In this approach, the decomposition of displacements into macro and perturbed components circumvents the calculation of superposing displacement fields induced by dislocations in an infinitely homogeneous medium, resulting in two periodic boundary value problems specialized for the analysis of representative volume elements. The present approach is verified by analyzing a model lamellar composite that includes edge dislocations fixed at interfaces. The plastic size effects due to dislocation pile-ups at interfaces are also analyzed. The analysis shows that, strain hardening in elastic-plastic layers arises depending on two factors, namely the thickness and stiffness of elastic layers; and the gap between slip planes in adjacent elastic-plastic layers. In the case where the thickness of elastic layers is several dozen nm, strain hardening in elastic-plastic layers is restrained as the gap of the slip planes decreases. This particular effect is attributed to the long range stress due to pile-ups in adjacent elastic-plastic layers.  相似文献   

10.
The solutions of a boundary value problem are explored for various classes of generalised crystal plasticity models including Cosserat, strain gradient and micromorphic crystal plasticity. The considered microstructure consists of a two-phase laminate containing a purely elastic and an elasto-plastic phase undergoing single or double slip. The local distributions of plastic slip, lattice rotation and stresses are derived when the microstructure is subjected to simple shear. The arising size effects are characterised by the overall extra back stress component resulting from the action of higher order stresses, a characteristic length lc describing the size-dependent domain of material response, and by the corresponding scaling law ln as a function of microstructural length scale, l. Explicit relations for these quantities are derived and compared for the different models. The conditions at the interface between the elastic and elasto-plastic phases are shown to play a major role in the solution. A range of material parameters is shown to exist for which the Cosserat and micromorphic approaches exhibit the same behaviour. The models display in general significantly different asymptotic regimes for small microstructural length scales. Scaling power laws with the exponent continuously ranging from 0 to −2 are obtained depending on the values of the material parameters. The unusual exponent value −2 is obtained for the strain gradient plasticity model, denoted “curl Hp” in this work. These results provide guidelines for the identification of higher order material parameters of crystal plasticity models from experimental data, such as precipitate size effects in precipitate strengthened alloys.  相似文献   

11.
12.
This paper describes a numerical, hierarchical multiscale modeling methodology involving two distinct bridges over three different length scales that predicts the work hardening of face centered cubic crystals in the absence of physical experiments. This methodology builds a clear bridging approach connecting nano-, micro- and meso-scales. In this methodology, molecular dynamics simulations (nanoscale) are performed to generate mobilities for dislocations. A discrete dislocations numerical tool (microscale) then uses the mobility data obtained from the molecular dynamics simulations to determine the work hardening. The second bridge occurs as the material parameters in a slip system hardening law employed in crystal plasticity models (mesoscale) are determined by the dislocation dynamics simulation results. The material parameters are computed using a correlation procedure based on both the functional form of the hardening law and the internal elastic stress/plastic shear strain fields computed from discrete dislocations. This multiscale bridging methodology was validated by using a crystal plasticity model to predict the mechanical response of an aluminum single crystal deformed under uniaxial compressive loading along the [4 2 1] direction. The computed strain-stress response agrees well with the experimental data.  相似文献   

13.
This paper focuses on the unification of two frequently used and apparently different strain gradient crystal plasticity frameworks: (i) the physically motivated strain gradient crystal plasticity models proposed by Evers et al. [2004a. Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids 52, 2379-2401; 2004b. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. International Journal of Solids and Structures 41, 5209-5230] and Bayley et al. [2006. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. International Journal of Solids and Structure 43, 7268-7286; 2007. A three dimensional dislocation field crystal plasticity approach applied to miniaturized structures. Philosophical Magazine 87, 1361-1378] (here referred to as Evers-Bayley type models), where a physical back stress plays the most important role and which are further extended here to deal with truly large deformations, and (ii) the thermodynamically consistent strain gradient crystal plasticity model of Gurtin (2002-2008) (here referred to as the Gurtin type model), where the energetic part of a higher order micro-stress is derived from a non-standard free energy function. The energetic micro-stress vectors for the Gurtin type models are extracted from the definition of the back stresses of the improved Evers-Bayley type models. The possible defect energy forms that yield the derived physically based micro-stresses are discussed. The duality of both type of formulations is shown further by a comparison of the micro-boundary conditions. As a result, this paper provides a direct physical interpretation of the different terms present in Gurtin's model.  相似文献   

14.
15.
Dislocations are the most important material defects in crystal plasticity, and although dislocation mechanics has long been understood as the underlying physical basis for continuum crystal plasticity formulations, explicit consideration of crystallographic dislocation mechanics has been largely absent in working constitutive models. Here, dislocation density state variables evolve from initial conditions according to equations based on fundamental concepts in dislocation mechanics such as the conservation of Burgers vector in multiplication and annihilation processes. The model is implemented to investigate the polyslip behavior of single-crystal aluminum. The results not only capture the mechanical stress/strain response, but also detail the development of underlying dislocation structure responsible for the plastic behavior.  相似文献   

16.
17.
18.
A computational method (CADD) is presented whereby a continuum region containing dislocation defects is coupled to a fully atomistic region. The model is related to previous hybrid models in which continuum finite elements are coupled to a fully atomistic region, with two key advantages: the ability to accomodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly “converting” the atomistic dislocations into discrete dislocations, or vice-versa. The resulting CADD model allows for the study of 2d problems involving large numbers of defects where the system size is too big for fully atomistic simulation, and improves upon existing discrete dislocation techniques by preserving accurate atomistic details of dislocation nucleation and other atomic scale phenomena. Applications to nanoindentation, atomic scale void growth under tensile stress, and fracture are used to validate and demonstrate the capabilities of the model.  相似文献   

19.
Ti–6Al–4V is a dual phase material with range of possible complex microstructures. It is well known that mechanical behavior of Ti–6Al–4V is significantly affected by its texture and microstructure morphology. A three-dimensional microstructure-based constitutive model for monotonic and cyclic deformation of duplex Ti–6Al–4V is developed and implemented. The model includes length scale effects associated with dislocation interactions with different microstructure features, and is calibrated using polycrystalline finite element simulations to fit the measured macroscopic responses (overall stress–strain behavior) of a duplex heat treated Ti–6Al–4V alloy subjected to a complex cyclic loading history. Representative microstructures are simulated using a three-dimensional finite element mesh with periodic boundary conditions imposed in all directions. The measured orientation and misorientation distributions of grains of this duplex Ti–6Al–4V are considered, and similar probability density distributions of the crystallographic orientations are assigned to the finite element mesh. The misorientation distributions are then fit using the simulated annealing method. Effects of microstructural features are examined and compared with the experimental data in terms of their influence on the material yield strength. The results are shown to be in good agreement with the experimental observations.  相似文献   

20.
The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3° and 90° with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and , and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths . On the other hand, for the films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and thick films sink-in occurs around the indenter, while pile-up occurs in the film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号