首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
For a crack in a magnetoelectroelastic plane under the electrically and magnetically semi-permeable boundary condition, we derive the non-linear analytical solution of the strip electric–magnetic polarization saturation (EMPS) model. Using the extended dislocation theory and integral equation method, we obtain the electric and magnetic yielding zones, as well as the field intensity factor and local J-integral. Adapting an iterative method, numerical examples were performed to analyze the effect of different boundary conditions and the electric–magnetic saturated properties on the electric displacement and magnetic induction in the crack cavity, electric and magnetic yielding zones, stress intensity factor and local J-integral.  相似文献   

2.
A matched asymptotic analysis is used to establish the correspondence between an appropriately scaled version of the governing equations of a phase-field model for fracture and the equations of the two-dimensional sharp-crack theory of Gurtin and Podio-Guidugli (1996) that arise on assuming that the bulk constitutive behavior is nonlinearly elastic, requiring that surface energy provides the only factor limiting crack propagation, and assuming that the fracture kinetics are isotropic. Consistent with the prominence of the configurational momentum balance at the crack tip in the latter theory, the approach capitalizes on the configurational momentum balance that arises naturally in the context of the phase-field model. The model developed and utilized here incorporates irreversibility of the phase-field evolution. This is achieved by introducing a suitable constraint and by carefully heeding the influence of that constraint on the kinetics underlying microstructural changes associated with fracture. The analysis is predicated on the assumption that the phase-field variable takes values in the closed interval between zero and unity.  相似文献   

3.
The paper analyzes the frictional sliding crack at the interface between a semi-infinite elastic body and a rigid one. It gives solutions in complex form for non-homogeneous loading at infinity and explicit solutions for polynomial loading at the interface. It is found that the singularities at the crack tips are different and that they are related to distinct kinematics at the crack tips. Firstly, we postulate that the geometry of the equilibrium crack with crack-tip positions b and a is determined by the conditions of square integrable stresses and continuous displacement at both crack tips. The crack geometry solution is not unique and is defined by any compatible pair (b,a) belonging to a quasi-elliptical curve. Then we prove that, for an equilibrium crack under given applied load, the “energy release rate” Gtip, defined at each crack tip by the Jε-integral along a semi-circular path, centered at the crack tip, with vanishing radius ε, vanishes. For arbitrarily shaped paths embracing the whole crack, with end points on the unbroken zone, the J-integral is path-independent and has the significance of the rate, with respect to the crack length, of energy dissipated by friction on the crack.  相似文献   

4.
The full-field and asymptotic solutions derived in Part I of this article (for a lamellar rigid inclusion, embedded in a uniformly prestressed, incompressible and orthotropic elastic sheet, subject to a far-field deformation increment) are employed to analyse shear band formation, as promoted by the near-tip stress singularity. Since these solutions involve the prestress as a parameter, stress and deformation fields can be investigated near the boundary of ellipticity loss (but still within the elliptic range). In the vicinity of this boundary, the incremental stress and displacement fields evidence localized deformations with patterns organized into shear bands, evidencing inclinations corresponding to those predicted at ellipticity loss. These localized deformation patterns are shown to explain experimental results on highly deformed soft materials containing thin, stiff inclusions. Finally, the incremental energy release rate and incremental J-integral are derived, related to a reduction (or growth) of the stiffener. It is shown that this is always positive (or negative), but tends to zero approaching the Ellipticity boundary, which implies that reduction of the lamellar inclusion dies out and, simultaneously, shear bands develop.  相似文献   

5.
T-stress as an important parameter characterizing the stress field around a cracked tip has attracted much attention. This paper concerns the T-stress near a cracked tip in a magnetoelectroelastic solid. By applying the Fourier transform, we solve the associated mixed boundary-value problem. Adopting crack-faces electromagnetic boundary conditions nonlinearly dependent on the crack opening displacement, coupled dual integral equations are derived. Then, the closed-form solution for the T-stress is obtained. A comparison of the T stresses for a cracked magnetoelectroelastic solid and for a cracked purely elastic material is made. Obtained results reveal that in addition to applied mechanical loading, the T-stress is dependent on electric and magnetic loadings for a vacuum crack.  相似文献   

6.
A model for analysing a soft-hard heterogeneous body with a crack in the hard region is presented in this paper. The result of fatigue experiments shows that mechanical heterogeneity affects the rate of propagation of fatigue crack. Meanwhile the results computed by BEM for cracked heterogeneous bodies under cycling loading indicate that the smaller the distance between the crack and the interface of hard and soft regions is, the smaller the amplitude of crack opening displacement, COD and ofJ-integral as well at the same step during the fatigue crack growth will be. The effect of heterogeneity on the rate of fatigue crack propagation is shown by the variation of J. The smaller the distance of the crack to the interface is, the smaller the rate of fatigue crack growth will be.  相似文献   

7.
对于截面含切口圆柱体的弹塑性自由扭转问题的分析,可按受力特点分为三个阶段:全弹性阶段、全塑性阶段和弹塑性阶段.每一阶段对应的分析方法不同,其中,在全弹性阶段可以采用有限差分法分析;在全塑性阶段可以按沙堆比拟的方法采用等倾曲面模拟;弹塑性阶段可以结合上述两种方法的结果和思路进行分析.利用差分法可以求出自由扭转截面内各离散点应力函数φ的数值解.本文推导了自由扭转的应力函数φ与J积分之间的关系,得出了自由扭转的应力函数与Ⅲ型裂纹的J积分之间的关系式.数值计算结果验证了本文方法的有效性和精确性.  相似文献   

8.
By using a complex function method in this paper, the complex form of J-integral of mixed mode crack tip for unidirectional plate of linear-elastic orthotropic composites is obtained first by substituting crack tip stresses and displacements into general formula of J-integral. And then, the path-independence of this J-integral is proved. Finally, the computing formula of this J-integral is derived. As special examples, the complex forms, path-independence and computing formulae of J-integrals of mode Ⅰ and mode Ⅱ crack tips for unidirectional plate of linear-elastic orthotropic composites are given.  相似文献   

9.
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventionalJ 2 deformation theory. No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory. Two typical crack problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-IK-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory. The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, theJ-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases. The project supported by the National Natural Science Foundation of China (19704100 and 10202023) and the Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20)  相似文献   

10.
The conservation law of J-integral in two-media with a crack paralleling to the interface of the two media was firstly proved by analytical and numerical finite element method. Then a schedule model was established that an interface crack is inserted in four media. According to the J-integral conservation law on multi-media, the energy release ratio of Ⅰ-type crack was considered to be conservation when the middle medium layers are very thin. And the conservation law was also convinced by numerical method. By means of the dimension analysis on the model, the asymptotic results and formula calculating the energy release ratio and complex stress intensity factor are presented.  相似文献   

11.
A material force method is proposed for evaluating the energy release rate and work rate of dissipation for fracture in inelastic materials. The inelastic material response is characterized by an internal variable model with an explicitly defined free energy density and dissipation potential. Expressions for the global material and dissipation forces are obtained from a global balance of energy-momentum that incorporates dissipation from inelastic material behavior. It is shown that in the special case of steady-state growth, the global dissipation force equals the work rate of dissipation, and the global material force and J-integral methods are equivalent. For implementation in finite element computations, an equivalent domain expression of the global material force is developed from the weak form of the energy-momentum balance. The method is applied to model problems of cohesive fracture in a remote K-field for viscoelasticity and elastoplasticity. The viscoelastic problem is used to compare various element discretizations in combination with different schemes for computing strain gradients. For the elastoplastic problem, the effects of cohesive and bulk properties on the plastic dissipation are examined using calculations of the global dissipation force.  相似文献   

12.
In this paper, based on energy variational principles of elastic-plastic solids, the path-independentJ-integral and its dual form in elastic-plastic solids with finite displacements are presented. Whose testification is given there after.  相似文献   

13.
In this paper Reddy’s third-order shear deformable plate theory is applied to asymmetrically delaminated orthotropic composite plates under antiplane–inplane shear fracture mode. A double-plate system is utilized to capture the mechanical behavior of the uncracked plate portion. An assumed displacement field is used and modified in order to satisfy the traction-free conditions at the top and bottom plate boundaries. Moreover, the system of exact kinematic conditions was also implemented into the novel plate model. An important improvement of this work compared to previous papers is the continuity condition of the shear strains at the interface of the double-plate system. Applying these conditions it is shown that the nineteen parameters of the third-order displacement field can be reduced to nine. Using the simplified displacement field the governing equations are derived, as well. The solution of a simply-supported delaminated plate is presented using the state-space model and the displacement, strain and stress fields are determined, respectively. The energy release rate and mode mixity distributions are calculated using the 3D J-integral. The analytical results are compared to those by finite element computations and it is concluded that the present model is the most accurate one among the previous plate theory-based approaches.  相似文献   

14.
In this paper, with the aid of superimposing technique and the Pseudo Traction Method (PTM), the interaction problem between an interface macrocrack and parallel microcracks in the process zone in bimaterial anisotropic solids is reduced to a system of integral equations. After the integral equations are solved numerically, a conservation law among three kinds ofJ-integrals is obtained which are induced from the interface macrocrack tip, the microcrack and the remote field, respectively. This conservation law reveals that the microcrack shielding effect in such materials could be considered as the redistribution of the remoteJ-integral. The project supported by the National Natural Science Foundation of China, and the Doctorate Foundation of Xi'an Jiaotong University  相似文献   

15.
The polarization saturation (PS) model [Gao, H., Barnett, D.M., 1996. An invariance property of local energy release rates in a strip saturation model of piezoelectric fracture. Int. J. Fract. 79, R25–R29; Gao, H., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510], and the dielectric breakdown (DB) model [Zhang, T.Y., Zhao, M.H., Cao, C.F., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311–327] explain very well some experimental observations of fracture of piezoelectric ceramics. In this paper, the nonlinear hybrid extended displacement discontinuity-fundamental solution method (NLHEDD-FSM) is presented for numerical analysis of both the PS and DB models of two-dimensional (2D) finite piezoelectric media under impermeable and semi-permeable electric boundary conditions. In this NLHEDD-FSM, the solution is expressed approximately by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack and the electric yielding zone. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy certain conditions on the boundary of the domain, on the crack face and the electric yielding zone. The zero electric displacement intensity factor in the PS model or the zero electric field strength intensity factor in the DB model at the outer tips of the electric yielding zone is used as a supplementary condition to determine the size of the electric yielding zone. Iteration approaches are adopted in the NLHEDD-FSM. The electric yielding zone is determined, and the extended intensity factors and the local J-integral are calculated for center cracks in piezoelectric strips. The effects of finite domain size, saturation property and different electric boundary conditions, as well as different models on the electric yielding zone and the local J-integral, are studied.  相似文献   

16.
Summary This paper deals with the calculation of the J-integral for electrically limited permeable cracks in piezoelectrics. The electromechanical J-integral is extended to account for electrical crack surface charge densities representing electric fields inside the crack. To avoid the costly implementation of the line integral along the crack faces, an alternative is proposed replacing the line integral by a simple jump term across the crack faces. Previous work by other authors related to the same subject is critically illuminated. The derivation was inspired by the Dugdale- Barenblatt cohesive zone model and yields an expression containing solely the local jump of displacements and electric potentials across the crack faces. This approach is shown to be exact for the Griffth crack.Numerical examples give evidence that the simplified approach works well for arbitrary crack configurations too.  相似文献   

17.
The Kuropatenko model for a multicomponent medium whose components are polytropic gases is considered. It is assumed that, as x → ±∞, the multicomponent medium is in a homogeneous state with constant gas-dynamic parameters — velocity, pressure, and temperature. For the traveling wave flows, conditions similar to the Hugoniot conditions are obtained and used to uniquely determine the flow parameters for x → −∞ from the flow parameters x → +∞ and traveling wave velocity. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 4, pp. 39–47, July–August, 2009.  相似文献   

18.
A numerical study of natural convection in a two-phase, two-component flow in a porous medium heated from below is presented. Interphase mass and energy transfer, latent heat and bouyancy effects are major physical features. This study extends earlier studies of natural convection based on single-phase, saturated porous medium models. The appearance of two-phase heat pipe zones in the flow has a marked effect on the fluid and heat flows as well as on the performance of the numerical methods. The numerical techniques for handling phase change, Jacobian construction and time step selection are discussed.  相似文献   

19.
The velocity field generated by thermal convection in a model porous medium is experimentally determined by means of both PIV and LDA techniques. Details of matching refraction index under non isothermal conditions are given. Fields are measured in the empty parallelepipedic cell and in a model medium made of parallel circular bundles. Results are in good agreement. Moreover, by an averaging technique, we are able to measure seeping velocity profiles.  相似文献   

20.
We study the effect of fluid contact area on viscous coupling in the parallel flow of immiscible fluids in a porous media geometry. We consider flow on opposite sides of a planar interface, consisting of alternating solid and open (slit) segments. We use the analytical solution of Tio and Sadhal [15] to derive explicit expressions for viscous coupling in terms of the fractional area of contact between the fluids and the viscosity ratio,M. ForM=1, the coefficient matrix obtained is symmetric showing that Onsager's relations are satisfied. In this case, the resulting viscous coupling is typically very small, in agreement with recent experimental results. Lattice gas simulations forM=1 using theBGK model support the theoretical results and show that viscous coupling further diminishes as the wall thickness increases. Assuming the same configuration, analytical results are next derived forM1. The results confirm an existing reciprocity relation between the off-diagonal terms. Viscous coupling remains small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号