首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rare earth metal-copper-indides RECu6In6 (RE=Y, Ce, Pr, Nd, Gd, Tb, Dy) were synthesized from the elements by arc-melting. Well-crystallized samples were obtained by slowly cooling the melted buttons from 1320 to 670 K in sealed silica tubes in a muffle furnace. They were investigated by X-ray diffraction on powders and single crystals: ThMn12 type, space group I4/mmm, Z=2, a=916.3(2), c=535.8(2) pm, wR2=0.063, 216 F2 values, 15 variables for YCu6In6, a=926.5(4), c=543.5(3) pm, wR2=0.064, 314 F2 values, 15 variables for CeCu6In6, a=925.7(4), c=540.1(3) pm, wR2=0.075, 219 F2 values, 15 variables for PrCu6In6, a=923.1(4), c=540.3(3) pm, wR2=0.071, 218 F2 values, 15 variables for NdCu6In6, a=917.7(4), c=540.2(3) pm, wR2=0.076, 207 F2 values, 15 variables for GdCu6In6, a=917.0(5), c=540.5(4) pm, wR2=0.062, 215 F2 values, 15 variables for TbCu6In6, a=915.2(8), c=540.7(7) pm, wR2=0.108, 218 F2 values, 15 variables for DyCu6In6. The structures have been refined with a split position (50% Cu+50% In) for the 8j site. They can be explained by a tetragonal body-centered packing of CN 20 polyhedra (10Cu+10In) around the rare earth atoms. The ordering models of the copper and indium atoms and the limitations/resolution of X-ray diffraction for this topic are discussed.  相似文献   

2.
The rare earth (RE) metal-rich indides RE14Rh3-xIn3 (RE=Y, Dy, Ho, Er, Tm, Lu) can be synthesized from the elements by arc-melting or induction melting in tantalum crucibles. They were investigated by X-ray diffraction on powders and single crystals: Lu14Co3In3 type, space group P42/nmc, Z=4, a=961.7(1), c=2335.5(5) pm, wR2=0.052, 2047 F2 values, 62 variables for Y14Rh3In3, a=956.8(1), c=2322.5(5) pm, wR2=0.068, 1730 F2 values, 63 variables for Dy14Rh2.89(1)In3, a=952.4(1), c=2309.2(5) pm, wR2=0.041, 1706 F2 values, 63 variables for Ho14Rh2.85(1)In3, a=948.6(1), c=2302.8(5) pm, wR2=0.053, 1977 F2 values, 63 variables for Er14Rh2.86(1)In3, a=943.8(1), c=2291.5(5) pm, wR2=0.065, 1936 F2 values, 63 variables for Tm14Rh2.89(1)In3, and a=937.8(1), c=2276.5(5) pm, wR2=0.050, 1637 F2 values, 63 variables for Lu14Rh2.74(1)In3. Except Yb14Rh3In3, the 8g Rh1 sites show small defects. Striking structural motifs are rhodium-centered trigonal prisms formed by the RE atoms with comparatively short Rh-RE distances (271-284 pm in Y14Rh3In3). These prisms are condensed via common corners and edges building two-dimensional polyhedral units. Both crystallographically independent indium sites show distorted icosahedral coordination. The icosahedra around In2 are interpenetrating, leading to In2-In2 pairs (309 pm in Y14Rh3In3).  相似文献   

3.
The new rare earth metal (RE)-nickel-indides Dy5Ni2In4 and RE4Ni11In20 (RE=Gd, Tb, Dy) were synthesized from the elements by arc-melting. Well-shaped single crystals were obtained by special annealing sequences. The four indides were investigated by X-ray diffraction on powders and single crystals: Lu5Ni2In4 type, Pbam, Z=2, a=1784.2(8), b=787.7(3), c=359.9(1) pm, wR2=0.0458, 891 F2 values, 36 variables for Dy5Ni2In4, U4Ni11Ga20 type, C2/m, a=2254.0(9), b=433.8(3), c=1658.5(8) pm, β=124.59(2)°, wR2=0.0794, 2154 F2 values, 108 variables for Gd4Ni11In20, a=2249.9(8), b=432.2(1), c=1657.9(5) pm, β=124.59(2)°, wR2=0.0417, 2147 F2 values, 108 variables for Tb4Ni11In20, and a=2252.2(5), b=430.6(1), c=1659.7(5) pm, β=124.58(2)°, wR2=0.0550, 2003 F2 values, 109 variables for Dy4Ni10.80In20.20. The 2d site in the dysprosium compound shows mixed Ni/In occupancy. Most nickel atoms in both series of compounds exhibit trigonal prismatic coordination by indium and rare earth atoms. Additionally, in the RE4Ni11In20 compounds one observes one-dimensional nickel clusters (259 pm Ni1-Ni6 in Dy4Ni10.80In20.20) that are embedded in an indium matrix. While only one short In1-In2 contact at 324 pm is observed in Dy5Ni2In4, the more indium-rich Dy4Ni10.80In20.20 structure exhibits a broader range in In-In interactions (291-364 pm). Together the nickel and indium atoms build up polyanionic networks, a two-dimensional one in Dy5Ni2In4 and a complex three-dimensional network in Dy4Ni10.80In20.20. These features have a clear consequence on the dysprosium coordination, i.e. a variety of short Dy-Dy contacts (338-379 pm) in Dy5Ni2In4, while the dysprosium atoms are well separated (430 pm shortest Dy-Dy distance) within the distorted hexagonal channels of the [Ni10.80In20.20] polyanion of Dy4Ni10.80In20.20. The crystal chemistry of both structure types is comparatively discussed.  相似文献   

4.
New indides SrAu3In3 and EuAu3In3 were synthesized by induction melting of the elements in sealed tantalum tubes. Both indides were characterized by X-ray diffraction on powders and single crystals. They crystallize with a new orthorhombic structure type: Pmmn, Z=2, a=455.26(9), b=775.9(2), c=904.9(2) pm, wR2=0.0425, 485 F2 values for SrAu3In3 and a=454.2(2), b=768.1(6), c=907.3(6) pm, wR2=0.0495, 551 F2 values for EuAu3In3 with 26 variables for each refinement. The gold and indium atoms build up three-dimensional [Au3In3] polyanionic networks, which leave distorted hexagonal channels for the strontium and europium atoms. Within the networks one observes Au2 atoms without Au-Au contacts and gold zig-zag chains (279 pm Au1-Au1 in EuAu3In3). The Au-In and In-In distances in EuAu3In3 range from 270 to 290 and from 305 to 355 pm. The europium atoms within the distorted hexagonal channels have coordination number 14 (8 Au+6 In). EuAu3In3 shows Curie-Weiss behavior above 50 K with an experimental magnetic moment of 8.1(1) μB/Eu atom. 151Eu Mössbauer spectra show a single signal at δ=−11.31(1) mm/s, compatible with divalent europium. No magnetic ordering was detected down to 3 K.  相似文献   

5.
The rare earth-nickel-indides RE14Ni3In3 (RE=Sc, Y, Gd-Tm, Lu) were synthesized from the elements by arc-melting and subsequent annealing. The compounds were investigated on the basis of X-ray powder and single crystal data: Lu14Co2In3 type, P42/nmc, Z=4, a=888.1(1), c=2134.7(4), wR2=0.0653, 1381 F2 values, 63 variables for Sc13.89Ni3.66In2.45; a=961.2(1), c=2316.2(5), wR2=0.0633, 1741 F2 values, 64 variables for Y13.84Ni3.19In2.97; a=965.3(1), c=2330.5(5), wR2=0.0620, 1765 F2 values, 63 variables for Gd14Ni3.29In2.71; a=956.8(1), c=2298.4(5), wR2=0.0829, 1707 F2 values, 64 variables for Tb13.82Ni3.36In2.82; a=951.7(1), c=2289.0(5), wR2=0.0838, 1794 F2 values, 64 variables for Dy13.60Ni3.34In3.06; a=948.53(7), c=2270.6(1), wR2=0.1137, 1191 F2 values, 64 variables for Ho13.35Ni3.17In3.48; a=943.5(1), c=2269.1(5), wR2=0.0552, 1646 F2 values, 64 variables for Er13.53Ni3.14In3.33; a=938.42(7), c=2250.8(1), wR2=0.1051, 1611 F2 values, 64 variables for Tm13.47Ni3.28In3.25; a=937.3(1), c=2249.6(5), wR2=0.0692, 1604 F2 values, 64 variables for Tm13.80Ni3.49In2.71; and a=933.4(1), c=2263.0(5), wR2=0.0709, 1603 F2 values, 64 variables for Lu13.94Ni3.07In2.99. The RE14Ni3In3 indides show significant Ni/In mixing on the 4c In1 site. Except the gadolinium compound, the RE14Ni3In3 intermetallics also reveal RE/In mixing on the 4c RE1 site, leading to the refined compositions. Due to the high rare earth metal content, the seven crystallographically independent RE sites have between 9 and 10 nearest RE neighbors. The RE14Ni3In3 structures can be described as a complex intergrowth of rare earth-based polyhedra. Both nickel sites have a distorted trigonal-prismatic rare earth coordination. An interesting feature is the In2-In2 dumb-bell at an In2-In2 distance of 304 pm (for Gd14Ni3.29In2.71). The crystal chemical peculiarities of the RE14Ni3In3 indides are briefly discussed.  相似文献   

6.
The rare earth metal rich compounds RE4NiMg (RE=Y, Pr-Nd, Sm, Gd-Tm, Lu) were synthesized from the elements in sealed tantalum tubes in an induction furnace. All compounds were investigated by X-ray diffraction on powders and single crystals: Gd4RhIn type, space group F4¯3m, Z=16, a=1367.6(2) pm for Y4NiMg, a=1403.7(3) pm for Pr4NiMg, a=1400.7(1) pm for Nd4NiMg, a=1386.5(2) pm for Sm4NiMg, a=1376.1(2) pm for Gd4NiMg, a=1362.1(1) pm for Tb4NiMg, a=1355.1(2) pm for Dy4NiMg, a=1355.2(1) pm for Ho4NiMg, a=1354.3(2) pm for Er4NiMg, a=1342.9(3) pm for Tm4NiMg, and a=1336.7(3) pm for Lu4NiMg. The nickel atoms have trigonal prismatic rare earth coordination. These NiRE6 prisms are condensed via common edges to a three-dimensional network which leaves voids for Mg4 tetrahedra and the RE1 atoms which show only weak coordination to the nickel atoms. The single crystal data indicate two kinds of solid solutions. The RE1 positions reveal small RE1/Mg mixing and some compounds also show Ni/Mg mixing within the Mg4 tetrahedra. Y4NiMg and Gd4NiMg have been tested for hydrogenation. These compounds absorb up to eleven hydrogen atoms per formula unit under a hydrogen pressure of 1 MPa at room temperature. The structure of the metal atoms is maintained with only an increase of the lattice parameters (ΔV/V≈22%) if the absorption is done at T<363 K as at higher temperature a decomposition into REH2-REH3 hydrides occurred. Moreover, the hydrogenation affects drastically the magnetic properties of these intermetallics. For instance, Gd4NiMg exhibits an antiferromagnetic behavior below TN=92 K whereas its hydride Gd4NiMgH11 is paramagnetic down to 1.8 K.  相似文献   

7.
Well crystallized samples of Dy2Pt7In16 and Tb6Pt12In23 were synthesized by an indium flux technique. Arc-melted precursor alloys with the starting compositions ∼DyPt3In6 and ∼TbPtIn4 were annealed with a slight excess of indium at 1200 K followed by slow cooling (5 K/h) to 870 K. Both indides were investigated by X-ray diffraction on powders and single crystals: Cmmm, a=1211.1(2), b=1997.8(3), c=439.50(6) pm, wR2=0.0518, 1138 F2 values, 45 variable parameters for Dy2Pt7In16 and C2/ma=2834.6(4), b=440.05(7), c=1477.1(3) pm, β=112.37(1)°, wR2=0.0753, 2543 F2 values, 126 variable parameters for Tb6Pt12In23. The platinum atoms in the terbium compound have a distorted trigonal prismatic coordination. In Dy2Pt7In16, trigonal and square prismatic coordination occur. The shortest interatomic distances are observed for Pt-In followed by In-In contacts. Considering these strong interactions, both structures can be described by complex three-dimensional [Pt7In16] and [Pt12In23] networks. The networks leave distorted pentagonal channels in Dy2Pt7In16, while pentagonal and hexagonal channels occur in Tb6Pt12In23. The crystal chemistry and chemical bonding of the two indides are briefly discussed.  相似文献   

8.
The ternary intermetallic compounds RE2Cu2Cd (RE=Y, Sm, Gd-Tm, Lu) were synthesized by induction-melting of the elements in sealed tantalum tubes. The samples were characterized by X-ray powder diffraction. The structure of Gd2Cu2Cd was refined from single crystal X-ray diffractometer data: Mo2FeB2 type, space group P4/mbm, a=756.2(3), c=380.2(3) pm, wR2=0.0455, 321 F2 values, 12 variables. The structures are 1:1 intergrowth variants of slightly distorted CsCl and AlB2 related slabs of compositions RECd and RECu2. The copper and cadmium atoms build up two-dimensional [Cu2Cd] networks (257 pm Cu-Cu and 301 pm Cu-Cd in Gd2Cu2Cd) which are bonded to the rare earth atoms via short RE-Cu contacts (290 pm in Gd2Cu2Cd). Temperature dependent susceptibility measurements of RE2Cu2Cd with RE=Gd, Tb, Dy, and Tm show experimental magnetic moments which are close to the free RE3+ ion values. The four compounds show ferromagnetic ordering at TC=116.7(2), 86.2(3), 48.4(1), and 14.5(1) K, respectively, as confirmed by heat capacity measurements. Dy2Cu2Cd shows a spin reorientation at TN=16.9(1) K.  相似文献   

9.
EuPd0.72In1.28 and EuPt0.56In1.44 were prepared under multianvil high-pressure (10.5 GPa) high-temperature (1500 and 1400 K) conditions from the precursor compounds EuPdIn and EuPtIn. They were investigated by X-ray diffraction on both powders and single crystals: MgZn2-type, space group P63/mmc, a=578.7(1) pm, c=944.9(3) pm, wR2=0.0734, 263 F2 values for EuPd0.72In1.28 and a=591.1(2) pm, c=933.8(2) pm, wR2=0.0853, 151 F2 values for EuPt0.56In1.44 with 13 variable parameters per refinement. Both structures are built up from face- and corner-sharing tetrahedra of palladium (platinum) and indium atoms. The europium cations are located in cavities within the three-dimensional [Pd0.72In1.28] and [Pt0.56In1.44] networks. The 2a and 6 h positions of the tetrahedral networks show mixed Pd/In and Pt/In occupancy in EuPd0.72In1.28 and EuPt0.56In1.44, respectively. The crystal chemistry of these indides is briefly discussed.  相似文献   

10.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

11.
Investigations on phase relationships and crystal structures have been conducted on several ternary rare-earth titanium antimonide systems. The isothermal cross-sections of the ternary RE-Ti-Sb systems containing a representative early (RE=La) and late rare-earth element (RE=Er) have been constructed at 800 °C. In the La-Ti-Sb system, the previously known compound La3TiSb5 was confirmed and the new compound La2Ti7Sb12 (own type, Cmmm, Z=2, a=10.5446(10) Å, b=20.768(2) Å, and c=4.4344(4) Å) was discovered. In the Er-Ti-Sb system, no ternary compounds were found. The structure of La2Ti7Sb12 consists of a complex arrangement of TiSb6 octahedra and disordered fragments of homoatomic Sb assemblies, generating a three-dimensional framework in which La atoms reside. Other early rare-earth elements (RE=Ce, Pr, Nd) can be substituted in this structure type. Attempts to prepare crystals in these systems through use of a tin flux resulted in the discovery of a new Sn-containing pseudoternary phase RETi3(SnxSb1−x)4 for RE=Nd, Sm (own type, Fmmm, Z=8; a=5.7806(4) Å, b=10.0846(7) Å, and c=24.2260(16) Å for NdTi3(Sn0.1Sb0.9)4; a=5.7590(4) Å, b=10.0686(6) Å, and c=24.1167(14) Å for SmTi3(Sn0.1Sb0.9)4). Its structure consists of double-layer slabs of Ti-centred octahedra stacked alternately with nets of the RE atoms; the Ti atoms are arranged in kagome nets.  相似文献   

12.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

13.
The RE3Ga9Ge compounds (RE=Y, Ce, Sm, Gd and Yb) were synthesized at 850°C in quantitative yield from reactions containing excess liquid Ga. The orthorhombic crystal structure is characterized by a unique three-dimensional open Ga framework with parallel straight tunnels. In the tunnels, inserted are arrays of the RE atoms together with interpenetrated monoatomic RE-Ga-Ge planes. A complex disordered arrangement of the RE and Ga atoms is observed in the monoatomic plane. Depending on the extent of disorder, the crystal structure could be presented either in a sub-cell (no ordering) or in a super-cell (partial ordering). Single-crystal X-ray data for Ce3Ga9Ge sub-structure: space group Immm, Z=2, cell parameters a=4.3400(12) Å; b=10.836(3) Å; and c=11.545(3) Å; super-structure: space group Cmma, Z=8, cell parameters a=8.680(3) Å; b=23.090(7) Å; and c=10.836(3) Å. The refinement based on the full-matrix least squares on Fo2[I>2σ(I)] converged to final residuals R1/wR2=0.0226/0.0528 and 0.0729/0.1569 for the sub- and super-structures, respectively. The relationship between the disordered sub-structure and partially ordered super-structure is discussed. Magnetic susceptibility measurements show Curie-Weiss behavior at the temperatures above 30 K with the negative Weiss constants Θ=−49(1) and−7.7 K for Gd and Ce analogs, respectively. An antiferromagnetic transition is observed in the Gd analog at TN=26.1 K. The μeff obtained for both analogs is close to the RE3+ free-ion value.  相似文献   

14.
The ternary rare-earth chromium germanides RECrxGe2 (RE=Sm, Gd-Er) have been obtained by reactions of the elements, either in the presence of tin or indium flux, or through arc-melting followed by annealing at 800 °C. The homogeneity range is limited to 0.25?x?0.50 for DyCrxGe2. Single-crystal and powder X-ray diffraction studies on the RECr0.3Ge2 members revealed that they adopt the CeNiSi2-type structure (space group Cmcm, Z=4, a=4.1939(5)-4.016(2) Å, b=16.291(2)-15.6579(6) Å, c=4.0598(5)-3.9876(2) Å in the progression for RE=Sm to Er), which can be considered to be built up by stuffing transition-metal atoms into the square pyramidal sites of a “REGe2” host with the ZrSi2-type structure. (The existence of YbCr0.3Ge2 is also implicated.) Only the average structure was determined here, because unusually short Cr-Ge distances imply the development of a superstructure involving distortions of the square Ge net. Magnetic measurements on RECr0.3Ge2 (RE=Gd-Er) indicated that antiferromagnetic ordering sets in below TN (ranging from 3 to 17 K), with additional transitions observed at lower temperatures for the Tb and Dy members.  相似文献   

15.
The ternary rare-earth zinc antimonides REZn1-xSb2 (RE=La, Ce, Pr, Nd, Sm, Gd, Tb) were prepared by heating at 1050 °C followed by annealing at 600 °C. For all members, single-crystal X-ray diffraction studies indicated that the Zn deficiency is essentially fixed, corresponding to the formula REZn0.6Sb2, with no appreciable homogeneity range. These compounds adopt the HfCuSi2-type structure (Pearson symbol tP8, space group P4/nmm, Z=2). Single-crystal electrical resistivity measurements confirmed the occurrence of an abrupt resistivity decrease near 4 K for RE=Ce, and a less pronounced one for RE=La, Pr, and Gd. Except for the ferromagnetic Ce (Tc=2.5 K) and antiferromagnetic Tb (TN=10 K) members, all remaining compounds exhibit no long-range magnetic ordering down to 2 K, instead showing temperature-independent (RE=La), van Vleck (RE=Sm), or Curie-Weiss paramagnetism (RE=Pr, Nd, Gd).  相似文献   

16.
The indides Ce7NixGexIn6 and Pr7NixGexIn6 were synthesized from the elements by arc-melting of the components. Single crystals were grown via special annealing sequences. Both structures were solved from X-ray single crystal diffraction data: new structure type, P6/m, Z=1, a=11.385(2), c=4.212(1) Å, wR2=0.0640, 634F2 values, 25 variables for Ce7Ni4.73Ge3.27In6 and a=11.355(6), c=4.183(2) Å, wR2=0.0539, 563F2 values, 25 variables for Pr7Ni4.96Ge3.04In6. Both indides show homogeneity ranges through Ni/Ge mixing (M sites). This new structure type can be derived from the AlB2 structure type by a substitution of the Al and B atoms by CeM12 and NiIn6Ce3 polyhedra (tricapped trigonal prism). Magnetic susceptibility measurements on a polycrystalline sample of Ce7Ni5Ge3In6 indicated Curie-Weiss like paramagnetic behavior down to 1.71 K with the effective magnetic moment slightly reduced in relation to the value expected for trivalent cerium ions. No magnetic ordering is evident.  相似文献   

17.
A series of ternary compounds RECu9Mg2 (RE=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb) have been synthesized via induction melting of elemental metal ingots followed by annealing at 400 °C for 4 weeks. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDXS) was used for examining microstructure and phase composition. These phases crystallize with an ordered version of the binary hexagonal structure type first reported for CeNi3. The crystal structure was solved for TbCu9Mg2 from single crystal X-ray counter data (TbCu9Mg2-structure type, P63/mmc-space group, hP24-Pearson symbol, a=0.49886 (7) nm, c=1.61646 (3) nm, RF=0.0474 for 190 unique reflections). The Rietveld refinement of the X-ray powder diffraction patterns of RECu9Mg2 confirmed the same crystal structure for the reported rare earth metals. The unit cell volumes for RECu9Mg2 smoothly follow the lanthanide contraction. The existence of a RECu9Mg2 phase was excluded for RE=Er and Tm under the investigated experimental conditions.  相似文献   

18.
Four new isostructural rare earth manganese stannides, namely RE3MnSn5−x (x=0.16(6), 0.29(1) for RE=Tm, x=0.05(8), 0.21(3) for RE=Lu), have been obtained by reacting the mixture of corresponding pure elements at high temperature. Single-crystal X-ray diffraction studies revealed that they crystallized in the orthorhombic space group Pnma (No. 62) with cell parameters of a=18.384(9)-18.495(6) Å, b=6.003(3)-6.062(2) Å, c=14.898(8)-14.976(4) Å, V=1644.3(14)-1679.0(9) Å3 and Z=8. Their structures belong to the Hf3Cr2Si4 type and feature a 3D framework composed of 1D [Mn2Sn7] chains interconnected by [Sn3] double chains via Sn-Sn bonds, forming 1D large channels based on [Mn4Sn16] 20-membered rings along the b-axis, which are occupied by the rare earth atoms. Electronic structure calculations based on density functional theory (DFT) for idealized “RE3MnSn5” model indicate that these compounds are metallic, which are in accordance with the results from temperature-dependent resistivity measurements.  相似文献   

19.
The ternary rare-earth zinc arsenides REZn1−xAs2 (RE=La-Nd, Sm) were prepared by reaction of the elements at 800 °C. Single-crystal and powder X-ray diffraction analysis revealed a defect SrZnBi2-type average structure for the La member (Pearson symbol tI16, space group I4/mmm, Z=4; a=4.0770(9) Å, c=20.533(5) Å), in contrast to defect HfCuSi2-type average structures for the remaining RE members (Pearson symbol tP8, space group P4/nmm, Z=2; a=4.0298(5)-3.9520(4) Å, c=10.222(1)-10.099(1) Å in the progression from Ce to Sm). The homogeneity range is not appreciable (estimated to be narrower than 0.6<1−x<0.7 in SmZn1−xAs2) and the formula REZn0.67As2 likely represents the Zn-rich phase boundary. The Ce-Nd members are Curie-Weiss paramagnets. LaZn0.67As2 shows activated behavior in its electrical resistivity, whereas SmZn0.67As2 exhibits anomalies in its temperature dependence of the electrical resistivity.  相似文献   

20.
The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6−)3([C3]4−)2(C4−)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号