首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
An analytical model is developed to assess the elastic-plastic dynamic response of fully backed sandwich plates under localized impulse load.The core is modeled as an elastic-perfectly plastic foundation.The top face sheet is treated as an individual plate resting on the foundation.The elastic-plastic analysis for the top face sheet is based on a minimum principle in dynamic plasticity associated with the finite difference technique.The effects of spatial and temporal distributions of the impulsive loading on the dynamic response of sandwich plates are discussed.The model can be used to predict the impulse-induced local effect on fully backed sandwich plates.  相似文献   

2.
Recent results on fluid–structure interaction for plates subject to high intensity air shocks are employed to assess the performance of all-metal sandwich plates compared to monolithic solid plates of the same material and mass per area. For a planar shock wave striking the plate, the new results enable the structural analysis to be decoupled from an analysis of shock propagation in the air. The study complements prior work on the role of fluid–structure interaction in the design and assessment of sandwich plates subject to water shocks. Square honeycomb and folded plate core topologies are considered. Fluid–structure interaction enhances the performance of sandwich plates relative to solid plates under intense air shocks, but not as significantly as for water blasts. The paper investigates two methods for applying the loading to the sandwich plate—responses are contrasted for loads applied as a time-dependent pressure history versus imposition of an initial velocity.  相似文献   

3.
李勇  肖伟  程远胜  刘均  张攀 《爆炸与冲击》2018,38(2):279-288
通过有限元软件LS-DYNA模拟了波纹杂交夹层板在冲击波与破片联合作用下的响应过程,研究了炸药当量、载荷类型和填充方式对波纹杂交夹层板变形与失效模式的影响,并与实体板、间隔板和波纹夹层板的抗联合毁伤性能进行了对比,讨论了波纹杂交夹层板的能量吸收特性。数值计算结果表明:与冲击波单独作用相比,破片群单独作用和冲击波与破片联合作用对结构造成的毁伤更为严重;当药量较小时,波纹夹层板和波纹杂交夹层板的抗联合毁伤性能优于实体板与间隔板,波纹杂交夹层板的抗联合毁伤性能从全填充、迎爆面填充到背爆面填充逐渐降低;当药量较大时,所有结构均产生破口失效;在能量耗散方面,冲击波单独作用时以波纹芯层吸能为主,破片群单独作用和冲击波与破片联合作用时以上面板吸能为主。  相似文献   

4.
轻质金属泡沫夹芯曲板的抗爆炸冲击响应研究   总被引:1,自引:0,他引:1  
夹芯结构具有高比强度、高比刚度和优异的吸能能力,已经被广泛应用于工程结构用来抵御高强度的爆炸冲击载荷。本文采用有限元数值模拟方法研究了爆炸载荷作用下四边固支夹芯曲板的动力响应。比较了同等质量下夹芯曲板、夹芯平板、实体曲板和实体平板四种结构的抗爆炸冲击性能,讨论了不同曲率和非对称因子对结构动力响应的影响,得到了使得夹芯曲板抗爆炸性能最佳的非对称因子。研究结果表明:夹芯曲板的抗爆炸冲击性能优于等质量的夹芯平板、实体曲板和实体平板结构,增大夹芯曲板的曲率能够提高结构的抗爆炸冲击性能。  相似文献   

5.
利用大型非线性有限元程序ABAQUS和LS-DYNA,对具有填充材料的金属格栅结构的冲击问题进行数值模拟.研究了不同的填充材料(金属泡沫和陶瓷)分别填充到不同的格栅构型(波纹型、蜂窝型和加强六边形)夹层板后,各类夹层板受到金属泡沫子弹和不锈钢子弹冲击时变形与能量吸收特性,探讨了夹层板上下面层板、支撑格栅及填充材料等各部分的吸能比率.研究结果表明,泡沫填充夹层板在缓冲吸能方面具有优势,陶瓷填充夹层板则在抵抗冲击穿透方面更具有优势,不同构型的夹层板,性能略有不同.  相似文献   

6.
撞击载荷下泡沫铝夹层板的动力响应   总被引:2,自引:0,他引:2  
应用泡沫金属子弹撞击加载的方式研究了固支方形夹层板和等质量实体板的动力响应,分别应用激光测速装置和位移传感器测量了泡沫子弹的撞击速度和后面板中心点的位移历史,给出了夹层板的变形与失效模式,研究了子弹冲量、面板厚度、泡沫芯层厚度及芯层密度对夹层板抗撞击性能的影响。结果表明,后面板中心点挠度最大,周边最小,整体变形为穹形,且伴有花瓣形的变形。参数研究表明,通过增加面板厚度或芯层厚度均能有效控制后面板的挠度,改善夹层板的能量吸收能力,结构响应对子弹冲量和芯层密度比较敏感。实验结果对多孔金属夹层结构的优化设计具有一定的参考价值。 更多还原  相似文献   

7.
One-dimensional response of sandwich plates to underwater shock loading   总被引:5,自引:0,他引:5  
The one-dimensional shock response of sandwich plates is investigated for the case of identical face sheets separated by a compressible foam core. The dynamic response of the sandwich plates is analysed for front face impulsive loading, and the effect of strain hardening of the core material is determined. For realistic ratios of core mass to face sheet mass, it is found that the strain hardening capacity of the core has a negligible effect upon the average through-thickness compressive strain developed within the core. Consequently, it suffices to model the core as an ideally plastic-locking solid. The one-dimensional response of sandwich plates subjected to an underwater pressure pulse is investigated by both a lumped parameter model and a finite element (FE) model. Unlike the monolithic plate case, cavitation does not occur at the fluid-structure interface, and the sandwich plates remain loaded by fluid until the end of the core compression phase. The momentum transmitted to the sandwich plate increases with increasing core strength, suggesting that weak sandwich cores may enhance the underwater shock resistance of sandwich plates.  相似文献   

8.
应用一级轻气炮驱动泡沫铝弹丸高速撞击加载技术,对实心钢板以及前/后面板为Q235钢板、芯层分别为铝基复合泡沫和普通泡沫铝的夹层板结构,在脉冲载荷作用下的动态力学响应进行实验研究。结果表明:泡沫铝子弹高速撞击靶板可近似模拟爆炸载荷效果;铝基复合泡沫夹层板的变形分为芯层压缩和整体变形两个阶段;与其他靶板相比,铝基复合泡沫夹层板的抗冲击性能最优。基于实验研究,应用LS-DYNA非线性动力有限元软件,对泡沫铝夹层板的动态响应进行数值模拟。结果表明:泡沫铝子弹的长度和初始速度对子弹与夹层板之间的接触作用力影响显著,并且呈线性关系。泡沫芯层强度对等质量及等厚度夹层板的抗冲击性能均有显著影响,夹层板中心挠度对前、后面板的厚度匹配较为敏感,在临界范围内,若背板厚度大于面板厚度,可减小夹层板的最终挠度。夹层板面板宜采用刚度较低、延性好、拉伸破坏应变较大的金属材料。  相似文献   

9.
任鹏  张伟  刘建华 《爆炸与冲击》2016,36(1):101-106
基于非药式水下爆炸冲击波加载技术,对格栅型夹层结构的动态响应及抗冲击防护性能,进行了实验研究。利用高速相机,对夹层板的动态变形情况进行了实时观测,获得了格栅夹层板气背面在水下冲击波作用下的动态响应历程,并结合相同面密度单层板在水下冲击波作用下的抗冲击变形结果,对比分析了铝合金格栅夹层板的抗冲击防护性能,获得了格栅型夹层板的气背面板最大变形量与水下冲击波量纲一冲量间的定量关系。  相似文献   

10.
This article reports an experimental study carried out with the aim of quantifying performance and failure modes of sandwich structures when subjected to impulsive blast loading. In particular, performance enhancement with respect to solid panels of equal mass per unit area is assessed. Likewise, the optimal distribution of the mass per unit area in the design of sandwich structures is investigated by comparing the behavior of sandwich structures with various distributions of face sheets thickness. By employing a previously developed FSI experiment, the study confirmed that usage of sandwich structures is beneficial and that performance enhancements, in terms of maximum panel deflection, as high as 68% are possible. The study also confirms theoretical and computational analyses suggesting that use of soft cores maximizes the benefits. Another interesting aspect revealed by this work is that the level of enhancement is highly related to the applied normalized impulse. The same distribution of mass per unit area between face sheets resulted in different normalized maximum deflection. A better performance enhancement was achieved at lower impulses. Here again, failure modes and their sequence seem to be the directly related to this finding. The work here reported clearly reveals a number of important features in the study of lightweight structures and points out to the synergies between structure geometry, materials, manufacturing methods, and threat levels as manifested by the strength of the impulse. Further theoretical and computational studies accounting for experimentally observed failure modes and its interdependence with the fabrication methods is needed to achieve additional predictive capabilities.  相似文献   

11.
In engineering problems it is necessary to predict the deformations of structural elements subjected to shock waves. In the literature a wide range of structural theories, constitutive equations and simulation techniques is available in order to simulate the occurring deformations. However, an objective statement about the accuracy of calculated structural deformations is only possible by comparing these results to experiments. In the present work a measurement technique with shock tubes is introduced which was especially developed to measure fast deections of plates during the impulse duration. This technique provides a possibility to validate and to improve constitutive and structural theories. Furthermore, very precise measurements can be performed in order to observe limit states and buckling of repeatedly loaded plates. These applications are shown in this study.  相似文献   

12.
A lattice structure deformation mechanism based theoretical model is developed to predict the dynamic response of square lattice sandwich plates under impulsive loading. The analytical model is established on the basis of the three-stage framework proposed by Fleck and Deshpande (2004). In the first stage, the impulse transmitted from air shock loading to the sandwich plates by fluid-structure interaction is analytically calculated. The lattice core suffers non-uniform compression in the second stage due to the clamped boundary conditions. The structure deformation mechanism is introduced in the lattice core compression and the analytical nominal stress–strain curve of core compression accords well with previous experimental results. In the final stage, the sandwich plate is analyzed as a continuum plate with non-uniform thickness deduced by inconsistent deformation of the front and back sheets.The experiment results of square metallic sandwich plates with tetrahedral lattice core are presented and compared with analytical prediction to validate the theoretical model. Good agreements are found between the predicted and testing results for both the impulse transmitted to the sandwich plates and the maximum deflection of the back face sheet.  相似文献   

13.
The geometrical non-linear behavior a curved sandwich panel with a stiff or compliant core when subjected to a pressure load using the Extended High-Order Sandwich Panel theory (EHSAPT), is presented. The formulation follows the EHSAPT procedure where the in-plane. i.e circumferential rigidity of the core is considered and the distribution of the displacements through the depth of the core are presumed. These displacement distributions are the closed-form solutions of the 2D governing equations of the curved core without circumferential rigidity that appear in the HSAPT curved sandwich panel model. The mathematical formulation includes the field equations along with the appropriate boundary and continuity conditions that take into account the high-order stress resultants in the core due to the presumed distributions. Finally a numerical study is conducted for a panel loaded by a distributed pressure at the upper face sheet. It reveals that the post-buckling response of a curved sandwich panels is associated with shallow to deep wrinkling deformations of the upper face sheet in the case of a simply-supported panel or a general non-linear pattern without wrinkles in the case of pinned supports with a short span. In both cases a stable post-buckling response is observed similar to that of a plate one.  相似文献   

14.
The mechanical response and fracture of metal sandwich panels subjected to multiple impulsive pressure loads (shocks) were investigated for panels with honeycomb and folded plate core constructions. The structural performance of panels with specific core configurations under multiple impulsive pressure loads is quantified by the maximum transverse deflection of the face sheets and the core crushing strain at mid-span of the panels. A limited set of simulations was carried out to find the optimum core density of a square honeycomb core sandwich panels under two shocks. The panels with a relative core density of 4%–5% are shown to have minimum face sheet deflection for the loading conditions considered here. This was consistent with the findings related to the sandwich panel response subjected to a single intense shock. Comparison of these results showed that optimized sandwich panels outperform solid plates under shock loading. An empirical method for prediction of the deflection and fracture of sandwich panels under two consecutive shocks – based on finding an effective peak over-pressure – was provided. Moreover, a limited number of simulations related to response and fracture of sandwich panels under multiple shocks with different material properties were performed to highlight the role of metal strength and ductility. In this set of simulations, square honeycomb sandwich panels made of four steels representing a relatively wide range of strength, strain hardening and ductility values were studied. For panels clamped at their edge, the observed failure mechanisms are core failure, top face failure and tearing at or close to the clamped edge. Failure diagrams for sandwich panels were constructed which reveal the fracture and failure mechanisms under various shock intensities for panels subjected to up to three consecutive shocks. The results complement previous studies on the behavior and fracture of these panels under high intensity dynamic loading and further highlights the potential of these panels for development of threat-resistant structural systems.  相似文献   

15.
We develop a hydroelastic model based on a {3, 2}-order sandwich composite panel theory and Wagner’s water impact theory for investigating the fluid–structure interaction during the slamming process. The sandwich panel theory incorporates the transverse shear and the transverse normal deformations of the core, while the face sheets are modeled with the Kirchhoff plate theory. The structural model has been validated with the general purpose finite element code ABAQUS®. The hydrodynamic model, based on Wagner’s theory, considers hull’s elastic deformations. A numerical procedure to solve the nonlinear system of governing equations, from which both the fluid’s and the structure’s deformations can be simultaneously computed, has been developed and verified. The hydroelastic effect on hull’s deformations and the unsteady slamming load have been delineated. This work advances the state of the art of analyzing hydroelastic deformations of composite hulls subjected to slamming impact.  相似文献   

16.
The elastica behavior of an extensional sandwich panel with a “soft” core when subjected to in-plane compressive loads is presented and it is compared with the response of its extensional equivalent single layer (ESL) with shear deformations model. The field equations along with the appropriate boundary conditions for the sandwich and the ESL panels have been derived through a variational approach following the High-order SAndwich Panel Theory (HSAPT) approach that takes into account the vertical flexibility of the core. The governing equations include the effects of the extension of the mid-surfaces of the face sheets of the sandwich panel or the mid-plane of the ESL model which the classical elastica approach misses. The results of the elastica response of a clamped-simply-supported sandwich panel and its ESL counterpart are presented and compared. They include the response along the panel, deformed shapes and equilibrium curves of in-plane loads versus structural quantities such as displacements and internal stress resultants and stresses. These results reveal that the predicted buckling load of the ESL panel is larger than that of the sandwich panel and that deep in the non-linear range the upper face sheet wrinkles with increasing overall and edge displacements and a release of the load. Hence, the use of an equivalent single layer panel especially when a sandwich panel with a compliant core is considered may lead to unsafe and unreliable predictions when large displacements and large rotations are considered.  相似文献   

17.
This work examines the performance of composite panels when subjected to underwater impulsive loads. The scaled fluid-structure experimental methodology developed by Espinosa and co-workers was employed. Failure modes, damage mechanisms and their distributions were identified and quantified for composite monolithic and sandwich panels subjected to typical blast loadings. The temporal evolutions of panel deflection and center deflection histories were obtained from shadow Moiré fringes acquired in real time by means of high speed photography. A linear relationship of zero intercept between peak center deflections versus applied impulse per areal mass was obtained for composite monolithic panels. For composite sandwich panels, the relationship between maximum center deflection versus applied impulse per areal mass was found to be approximately bilinear but with a higher slope. Performance improvement of sandwich versus monolithic composite panels was, therefore, established specially at sufficiently high impulses per areal mass (I0/M¯>170 m s−1). Severe failure was observed in solid panels subjected to impulses per areal mass larger than 300 m s−1. Extensive fiber fracture occurred in the center of the panels, where cracks formed a cross pattern through the plate thickness and delamination was very extensive on the sample edges due to bending effects. Similar levels of damage were observed in sandwich panels but at much higher impulses per areal mass. The experimental work reported in this paper encompasses not only characterization of the dynamic performance of monolithic and sandwich panels but also post-mortem characterization by means of both non-destructive and microscopy techniques. The spatial distribution of delamination and matrix cracking were quantified, as a function of applied impulse, in both monolithic and sandwich panels. The extent of core crushing was also quantified in the case of sandwich panels. The quantified variables represent ideal metrics against which model predictive capabilities can be assessed.  相似文献   

18.
A finite element method of analysis of the vibrational and wave propagational characteristics is presented for a laminated orthotropic plate under initial stress. The plate may have an arbitrary number of bonded elastic orthotropic layers, each with distinct thickness, density and mechanical properties, and the analysis is capable of treating a completely arbitrary three-dimensional state of initial stress. Biot's theory for incremental elastic deformations of a stressed solid forms the basis for this study. A homogeneous, isotropic plate under two different states of initial stress was analyzed and their numerical results showed excellent correlation with those from an exact solution. Further examples of a three layer composite plate and a sandwich plate are offered to add some general insight to the physical behavior of such plates.  相似文献   

19.
A two-dimensional solution is presented for bending analysis of simply supported functionally graded ceramic–metal sandwich plates. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity and Poisson’s ratio of the faces are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. We derive field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. Numerical results of the sinusoidal, third-order, first-order and classical theories are presented to show the effect of material distribution on the deflections and stresses.  相似文献   

20.
曲壁蜂窝具有负刚度特性,可以在大变形过程中吸收能量、抗冲击,并且在冲击过后可以自我恢复而不像传统蜂窝被压溃。本文将曲梁构成的负刚度蜂窝作为芯层,建立夹层板的动力学模型;推导出了曲壁负刚度蜂窝胞元的等效弹性参数,将其周期性排列为蜂窝芯,应用Reddy高阶剪切变形理论、Von-Karman大变形关系和Hamilton原理推导了负刚度蜂窝夹层板的非线性动力学方程;应用Navier法计算了四边简支边界条件下的固有频率。并利用有限元软件ABAQUS建立模型,计算固有频率,与理论计算结果进行比较,结果显示二者的计算结果具有较好的一致性,验证了芯层等效弹性参数及模型的有效性。探讨了在蜂窝胞元具有较高吸能情形下,夹层板在不同芯层厚度、不同芯厚比以及不同胞元曲壁厚度时的固有频率的变化特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号