首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-dimensional turbulent forced convective heat transfer and flow characteristics, and the non-dimensional entropy generation number in a helical coiled tube subjected to uniform wall temperature are simulated using the k–ε standard turbulence model. A finite volume method is employed to solve the governing equations. The effects of Reynolds number, curvature ratio, and coil pitch on the average friction factor and Nusselt number are discussed. The results presented in this paper cover a Reynolds number range of 2 × 104 to 6 × 104, a pitch range of 0.1–0.2 and a curvature ratio range of 0.1–0.3. The results show that the coil pitch, curvature ratio and Reynolds number have different effects on the average friction factor and Nusselt number at different cross-sections. In addition, the flow and heat transfer characteristics in a helical coiled tube with a larger curvature ratio for turbulent flow are different from that of smaller curvature ratio for laminar and turbulent flow in certain ways. Some new features that are not obtained in previous researches are revealed. Moreover, the effects of Reynolds number, curvature ratio, and coil pitch on the non-dimensional entropy generation number of turbulent forced convection in a helical coiled tube are also discussed.  相似文献   

2.
An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and helically dimpled tube under turbulent flow with constant heat flux is presented in this work using CuO/water nanofluid as working fluid. The effects of the dimples and nanofluid on the Nusselt number and the friction factor are determined in a circular tube with a fully developed turbulent flow for the Reynolds number in the range between 2500 and 6000. The height of the dimple/protrusion was 0.6 mm. The effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region were investigated. The experiments were performed using helically dimpled tube with CuO/water nanofluid having 0.1%, 0.2% and 0.3% volume concentrations of nanoparticles as working fluid. The experimental results reveal that the use of nanofluids in a helically dimpled tube increases the heat transfer rate with negligible increase in friction factor compared to plain tube. The experimental results showed that the Nusselt number with dimpled tube and nanofluids under turbulent flow is about 19%, 27% and 39% (for 0.1%, 0.2% and 0.3% volume concentrations respectively) higher than the Nusselt number obtained with plain tube and water. The experimental results of isothermal pressure drop for turbulent flow showed that the dimpled tube friction factors were about 2-10% higher than the plain tube. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds number, pitch ratio and volume concentration fits with the experimental data within ±15%.  相似文献   

3.
The turbulent flow and heat transfer in triangular rod bundles are investigated theoretically with CFD code FLUENT. The unsteady Reynolds Stress Model is adopted as turbulence modeling. The wall function is used for near wall boundary layer. The calculation results were in agreement with experimental data. The effects of the Reynolds number and pitch to diameter ratio on the flow and heat transfer in the lattice are significant. The traditional theoretical models could not predict the flow and heat transfer in the lattice. The P/D = 1.03 is a critical point. In this case, the flow and heat transfer in the lattice is the most desirable and most efficient, and the nuclear power could also reach its maximum. The variation of large scale coherent structure with pitch to diameter ratio is consistent with the variation of the Nusselt number with pitch to diameter ratio.  相似文献   

4.
Fluid flow and heat transfer of mixed convection from a constant wall temperature circular cylinder in zero-mean velocity oscillating cooling flows have been simulated based on the projection method with two dimensional exponential stretched staggered cylindrical meshes. Cycle mean temperature and secondary streaming are obtained by the method of partial sums of the Fourier series. Present numerical results are validated by comparing the heat transfer results of free convection and the secondary streaming of pure oscillating flow over a circular cylinder to published experimental and numerical results. The complete structures of the cycle mean temperature and secondary streaming patterns are provided by numerical simulations over wide ranges of the Reynolds number, the Keulegan–Carpenter number and the Richardson number. Based on turning points of the curves of the overall Nusselt numbers versus Reynolds numbers and the characteristics of the cycle averaged temperature and flow patterns, the heat transfer can be divided into three linear regimes (conduction, laminar convection, and turbulent convection dominated regimes) and two non-linear transition regimes. The effects of wave directions, amplitudes, frequencies, and buoyancy forces on the enhancement of heat transfer are also investigated. The effective ranges of the governing parameters for heat transfer enhancement are identified.  相似文献   

5.
Heat transfer characteristics of pulsated turbulent pipe flow   总被引:1,自引:0,他引:1  
Heat Transfer characteristics of pulsated turbulent pipe flow under different conditions of pulsation frequency, amplitude and Reynolds number were experimentally investigated. The pipe wall was kept at uniform heat flux. Reynolds number was varied from 5000 to 29 000 while frequency of pulsation ranged from 1 to 8 Hz. The results show an enhancement in the local Nusselt number at the entrance region. The rate of enhancement decreased as Re increased. Reduction of heat transfer coefficient was observed at higher frequencies and the effect of pulsation is found to be significant at high Reynolds number. It can be concluded that the effect of pulsation on the mean Nusselt numbers is insignificant at low values of Reynolds number. Received on 29 June 1998  相似文献   

6.
Two phase mixture model is used to numerically simulate the turbulent forced convection of Al2O3-Water nanofluid in a channel with corrugated wall under constant heat flux. Both mixture and single phase models are implemented to study the nanofluid flow in such a geometry and the results have been compared. The effects of the volume fraction of nanoparticles, Reynolds number and amplitude of the wavy wall on the rate of heat transfer are investigated. The results showed that with increasing the volume fraction of nanoparticles, Reynolds number and amplitude of wall waves, the rate of heat transfer increases. Also the results showed that the mixture model yields to higher Nusselt numbers than the single phase model in a similar case.  相似文献   

7.
An experimental study of flow and heat transfer downstream of a surface-mounted rib with a slit is reported. The open area ratios of the slit rib considered are 10, 20, 30, 40 and 50% with respect to the total projected rib area. Experiments were conducted in a wind tunnel, mostly at a hydraulic diameter based Reynolds number of 32,100. The surface Nusselt number distribution was determined by liquid crystal thermography. Results show that the slit inside the rib enhances heat transfer and reduces pressure penalty, with an optimum performance seen at an open area ratio of 20%. To explain this result, a qualitative picture of the flow field behind the rib was obtained by smoke visualization. Time averages and turbulent statistics of the velocity and temperature fluctuations were measured in detail, using hotwire anemometry and cold wire anemometry respectively. For open area ratios less than 30%, measurements show that the flow through the slit modifies the reattaching shear layer from the top of the rib. The resulting reattachment length is smaller, the peak in Nusselt number is higher, and the average heat transfer from the heated surface is enhanced. For the rib with an open area ratio greater than 40%, the lower portion behaves as an independent small rib with its own reattachment region. Simultaneously, the flow downstream of the upper rectangular part shows characteristics of vortex shedding. Thus, the size of the slit is seen to be an additional parameter that can be used to control heat transfer from the solid surface, in comparison to the solid rib.  相似文献   

8.
The present work aims to investigate numerically the flowfield and heat transfer process in gas-solid suspension in a vertical pneumatic conveying pipe. The Eulerian-Lagrangian model is used to simulate the flow of the two-phases. The gas phase is simulated based on Reynolds Average Navier-Stokes equations (RANS) with low Reynolds number k-ε model, while particle tracking procedure is used for the solid phase. An anisotropic model is used to calculate the Reynolds stresses and the turbulent Prandtl number is calculated as a function of the turbulent viscosity. The model takes into account the lift and drag forces and the effect of particle rotation as well as the particles dispersion by turbulence effect. The effects of inter-particles collisions and turbulence modulation by the solid particles, i.e. four-way coupling, are also included in the model. Comparisons between different models for turbulence modulation with experimental data are carried out to select the best model. The model is validated against published experimental data for velocities of the two phases, turbulence intensity, solids concentration, pressure drop, heat transfer rates and Nusselt number distribution. The comparisons indicate that the present model is able to predict the complex interaction between the two phases in non-isothermal gas-solid flow in the tested range. The results indicate that the particle-particle collision, turbulence dispersion and lift force play a key role in the concentration distribution. In addition, the heat transfer rate increases as the mass loading ratio increases and Nusselt number increases as the pipe diameter increases.  相似文献   

9.
The present paper describes the heat transfer characteristics of an annular turbulent impinging jet with a confined wall. The local temperature distribution on the impingement surface was measured using a thermosensitive liquid crystal sheet and an image processor. The net heat flux was evaluated by considering the heat conduction in the heated substrate and the thermal radiation between an upper confining insulated wall and an impingement surface. Distributions of the temperature and Nusselt number on the impingement surface were captured in two-dimensional maps. Effects of the diameter ratio of the annular nozzle, the space between nozzle and impingement surface and the Reynolds number on radial distributions of the local Nusselt number were examined. Experimental formulas of the local Nusselt number were obtained in power-law expressions of r/rp for the major and minor flow regions.  相似文献   

10.
In this study, heat removal from a surface, which is located into the reciprocating flow in a vertical annular liquid column, is investigated experimentally. The experiments are carried out for four different oscillation frequencies and three heat fluxes while the amplitude remains constant for all cases. Instantaneous and time-averaged surface and bulk temperature variations are presented. The cycle-averaged values are considered in the calculation of heat transfer using the experimental measurements. Heat removal from the cold surface due to the oscillating liquid column is determined in terms of Nusselt number. Based on the experimental data, an empirical equation is obtained for the cycle averaged Nusselt number as a function of kinetic Reynolds number.  相似文献   

11.
Present study numerically and experimentally investigates the turbulent forced convective flow over a heated block mounted on one principal wall of an adiabatic channel. In the computation, thek-?, low-Reynolds-number, two-equation model was adopted for the turbulence closure. In the experiment, the flow measurement was performed by the laser Doppler velocimetry and the mass transfer measurement was carried out via the naphthalene sublimation technique. By virtue of the analogy between heat and mass transfer, the results could then be converted to predict the heat transfer coefficient. The effects of the Reynolds number and the aspect ratio of the block on heat transfer and fluid flow are thoroughly investigated. Distributions of the velocity and the turbulent kinetic energy are presented to gain an insight into the influence of the fluid flow on the heat transfer from the block. The Nusselt number hump is found on every face of the block, which is attributed to the separating bubble there. It is worth noting that the Nusselt number hump is located near the reattachment point of the separating bubble. In the absence of the separating bubble, the Nusselt number decreases or increases monotonously. Comparisons between numerical and experimental results of the local velocity and the heat transfer coefficient show reasonable agreement.  相似文献   

12.
Enhancement of heat transfer to the fluid can be done by turbulence promoters such as attached fins to the pipe walls. In this study, the flow field and the heat transfer rates were numerically investigated in a pipe with an internally attached fin. Numerical simulations were conducted for four different types of fluids and for different fin heights and locations, and as the Reynolds number was varied, the effects of the fin on Nusselt number and friction factors were investigated. For all the Reynolds numbers considered in this study, the effect of fin location on the heat transfer rate and friction factor was negligible. As the fin height was increased, the mean Nusselt number and the friction factor also increased in the turbulent flow regimes. For low Prandtl number fluids (Pr = 0.011), the main heat transfer mode is conduction, and hence the mean Nusselt number slightly affected the flow rates.  相似文献   

13.
A fully implicit upwind finite difference numerical scheme has been proposed to investigate the characteristics of thermal entrance heat transfer in laminar pipe flows subject to a step change in ambient temperature. In order to demonstrate the results more clearly, a modified Nusselt number is introduced. The unsteady axial variations of modified Nusselt number, bulk fluid temperature, and wall temperature and the transient temperature profiles at certain axial locations are presented graphically for various outside heat transfer coefficients. The effects of the outside heat transfer coefficient on the heat transport processes in the flow are examined in detail. The results can be comprehensively explained by the interaction between the upstream convective heat transfer and the diffusion heat transfer in the radial direction. Steady state is reached when the axial convection balances the radial diffusion.  相似文献   

14.
应用一种合理考虑湍流一旋流相互作用及湍流脉动各向异性的新的代数ReynoldS应力模型,对环形通道内的湍流旋流流动进行了数值模拟.研究了旋流数、进口轴向速度和内外半径比等参数对环形通道内湍流旋流流动的影响,以及由此产生的流场变化对强化环形通道内传热的作用.  相似文献   

15.
An experimental investigations of heat transfer for a stationary isothermal circular cylinder exposed normal to an impinging round air-jet has been reported. The circumferential heat transfer distributions as well as axial Nusselt number is measured. The measurements are taken as a function of the Reynolds number ranging from 3.8 × 103 to 4 × 104, the cylinder separation distance to the nozzle diameter (z/d) varying from 7 to 30, and the nozzle to cylinder diameter ratio (d/D) changing from 0.06 to 0.14. The output results indicated that the axial and radial distributions of the local heat transfer peaked at the impingement point. The heat transfer rate increases as the values of z decreases, for the same d and Re. The drop-off of the Nusselt number with increasing axial distance or radial angle from the impingement point was more pronounced for smaller z and d. The peripheral and surface average Nusselt numbers were determined by integration. The experimental data was used to produce correlations for both average and stagnation point heat transfer. Received on 4 January 1999  相似文献   

16.
Experimental results are presented for characteristics of impingement heat transfer caused by three slot jets. Experimental values were obtained for the dimensionless distance H = 0.5−3, dimensionless pitch P = 6−16, and Reynolds number Re = 500−8000. For laminar impinging flow, they were compared with numerical results. For turbulent impinging flow, two peaks of the local Nusselt number were obtained behind the second nozzle. The position of the second peak approached the nozzle as the space between nozzle and impinged surface decreased. The average Nusselt number between the central and second nozzles was determined from the ratio P/H and the Reynolds number based on the pitch of the nozzles.  相似文献   

17.
In the present case, the conjugate heat transfer involving a turbulent plane offset jet is considered. The bottom wall of the solid block is maintained at an isothermal temperature higher than the jet inlet temperature. The parameters considered are the offset ratio (OR), the conductivity ratio (K), the solid slab thickness (S) and the Prandtl number (Pr). The Reynolds number considered is 15,000 because the flow becomes fully turbulent and then it becomes independent of the Reynolds number. The ranges of parameters considered are: OR = 3, 7 and 11, K = 1–1,000, S = 1–10 and Pr = 0.01–100. High Reynolds number two-equation model (k–ε) has been used for turbulence modeling. Results for the solid–fluid interface temperature, local Nusselt number, local heat flux, average Nusselt number and average heat transfer have been presented and discussed.  相似文献   

18.
The heat transfer from a surface heated with constant heat flux to an oscillating vertical annular liquid column having an interface with the atmosphere is investigated experimentally in the present paper. The analysis is carried out for the case of different oscillation frequencies while the displacement amplitude remains constant. Based on the experimental data a correlation equation is obtained for the cycle-averaged Nusselt number as a function of kinetic Reynolds number.  相似文献   

19.
The steady-state conjugated turbulent heat transfer with axial conduction in the wall and convection boundary conditions is solved with the generalized integral transform technique for the flow of Newtonian fluid in parallel-plate duct. A lumped wall model that neglects transverse temperature gradients in the solid but that takes into account the axial heat conduction along the wall is adopted. Highly accurate results are presented for the fluid bulk and wall temperatures and Nusselt number. The effects of the conjugation parameter, Biot number, and the dimensionless channel length on Nusselt number and fluid bulk and wall temperatures are systematically investigated.  相似文献   

20.
The results of an experimentalnvestigation of turbulent flow heat transfer and pressure drop characteristics in a circular tube fitted with regularly spaced twisted-tape elements connected by thin circular rods are reported. The characteristics are governed by Reynolds number, Prandtl number, twist ratio, space ratio, and rod-to-tube diameter ratio. Correlations for friction factor and Nusselt number are also reported. It is shown that on the basis of both constant pumping power and constant heat duty, regularly spaced twisted-tape elements do not perform better than full-length twisted tapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号