首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plasticity 22, 279-313], that the coexisting active and frozen phases of the polymer and the transitions between them provide the underlying mechanisms for strain storage and recovery during a shape memory cycle. General constitutive functions for nonlinear thermoelastic materials are used for the active and frozen phases. Also used is an internal state variable which describes the volume fraction of the frozen phase. The material behavior of history dependence in the frozen phase is captured by using the concept of frozen reference configuration. The relation between the overall deformation and the stress is derived by integration of the constitutive equations of the coexisting phases. As a special case of the nonlinear constitutive model, a neo-Hookean type constitutive function for each phase is considered. The material behaviors in a shape memory cycle under uniaxial loading are examined. A linear constitutive model is derived from the nonlinear theory by considering small deformations. The predictions of this model are compared with experimental measurements.  相似文献   

2.
Shape memory properties of thermally responsive polymeric materials are due mainly to a phase transition from the rubbery phase above the transition temperature (glass transition or melting temperature) to the glassy or semicrystalline phase below this temperature. Within constitutive models of shape memory polymers (SMPs), this phase transition is mathematically accounted for by the frozen volume fraction for which a suitable evolution law must be postulated or derived. In this paper, the evolution laws that have been proposed in the literature are examined both from the experimental and from the theoretical point of view. It is found that the predictive capabilities of the phenomenological laws may be improved by admitting involved material constants to depend on parameters such as pre-strain, rate of heating and cooling, and other quantities characterizing thermomechanical cyclic tests. It is next shown that for a wide class of linear constitutive models of SMPs, the evolution law for the frozen volume fraction may be derived in a systematic way from strain and stress profiles experimentally obtained in the standard thermomechanical test.  相似文献   

3.
In a previous study, it was found that the shape memory functionality of a shape memory polymer based syntactic foam can be utilized to self-seal impact damage repeatedly, efficiently, and almost autonomously [Li G., John M., 2008. A self-healing smart syntactic foam under multiple impacts. Comp. Sci. Technol. 68(15–16), 3337–3343]. The purpose of this study is to develop a thermodynamics based constitutive model to predict the thermomechanical behavior of the smart foam. First, based on DMA tests and FTIR tests, the foam is perceived as a three-phase composite with interfacial transition zone (interphase) coated microballoons dispersed in the shape memory polymer (SMP) matrix; for simplicity, it is assumed to be an equivalent two-phase composite by dispersing elastic microballoons into an equivalent SMP matrix. Second, the equivalent SMP matrix is phenomenologically assumed to consist of an active (rubbery) phase and a frozen (glassy) phase following Liu et al. [Liu, Y., Gall, K., Dunn, M.L., Greenberg, A.R., Diani J., 2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plasticity 22, 279–313]. The phase transition between these two phases is through the change of the volume fraction of each phase and it captures the thermomechanical behavior of the foam. The time rate effect is also considered by using rheological models. With some parameters determined by additional experimental testing, the prediction by this model is in good agreement with the 1D test result found in the literature. Parametric studies are also conducted using the constitutive model, which provide guidance for future design of this novel self-healing syntactic foam and a class of light-weight composite sandwich structures.  相似文献   

4.
Shape memory alloys (SMAs) are materials that, among other characteristics, have the ability to present high deformation levels when subjected to mechanical loading, returning to their original form after a temperature change. Literature presents numerous constitutive models that describe the phenomenological features of the thermomechanical behavior of SMAs. The present paper introduces a novel three-dimensional constitutive model that describes the martensitic phase transformations within the scope of standard generalized materials. The model is capable of describing the main features of the thermomechanical behavior of SMAs by considering four macroscopic phases associated with austenitic phase and three variants of martensite. A numerical procedure is proposed to deal with the nonlinearities of the model. Numerical simulations are carried out dealing with uniaxial and multiaxial single-point tests showing the capability of the introduced model to describe the general behavior of SMAs. Specifically, uniaxial tests show pseudoelasticity, shape memory effect, phase transformation due to temperature change and internal subloops due to incomplete phase transformations. Concerning multiaxial tests, the pure shear stress and hydrostatic tests are discussed showing qualitatively coherent results. Moreover, other tensile–shear tests are conducted modeling the general three-dimensional behavior of SMAs. It is shown that the multiaxial results are qualitative coherent with the related data presented in the literature.  相似文献   

5.
In the present work we propose a new thermomechanically coupled material model for shape memory alloys (SMA) which describes two important phenomena typical for the material behaviour of shape memory alloys: pseudoelasticity as well as the shape memory effect. The constitutive equations are derived in the framework of large strains since the martensitic phase transformation involves inelastic deformations up to 8%, or even up to 20% if the plastic deformation after the phase transformation is taken into account. Therefore, we apply a multiplicative split of the deformation gradient into elastic and inelastic parts, the latter concerning the martensitic phase transformation. An extended phase transformation function has been considered to include the tension–compression asymmetry particularly typical for textured SMA samples. In order to apply the concept in the simulation of complex structures, it is implemented into a finite element code. This implementation is based on an innovative integration scheme for the existing evolution equations and a monolithic solution algorithm for the coupled mechanical and thermal fields. The coupling effect is accurately investigated in several numerical examples including pseudoelasticity as well as the free and the suppressed shape memory effect. Finally, the model is used to simulate the shape memory effect in a medical foot staple which interacts with a bone segment.  相似文献   

6.
Observations are reported on high-density polyethylene in uniaxial tensile tests with constant strain rates and relaxation tests at various temperatures ranging from 25 to 90 °C. A constitutive model is derived for the nonlinear viscoelastic and viscoplastic behavior of semi-crystalline polymers at three-dimensional deformations. Adjustable parameters in the stress–strain relations are found by fitting the experimental data. It is demonstrated that (i) the model correctly approximates the observations and (ii) material parameters are independent of strain rate and change consistently with temperature.  相似文献   

7.
This study examined the constitutive modeling of shape memory polyurethanes (SMPUs). SMPUs exhibit a thermo-responsive shape memory behavior, i.e., a thermally fixed temporary shape at a low temperature that returns to its original (permanent) shape when heated. This unique property arises from the molecular configuration of their hard and soft segments; the latter can form a variable state ranging from a rubbery (active) to rigid (frozen) phase according to temperature, while the former undergoes little deformation and acts as a fixed net between the soft segments. In this study, a three-phase phenomenological model (one hard segment phase and two (active and frozen) soft segment phases) was developed to describe the deformation behavior of SMPUs according to their microstructure. The stress and strain relationships of each phase are described mathematically using one three-element viscoelastic and two Mooney–Rivlin hyperelastic equations, respectively. The total stress was calculated by combining those equations via some internal variables that can track the volume fractions of the active and frozen phases and a non-mechanical frozen strain. For validation, the cyclic thermo-mechanical behavior of a SMPU was predicted. These predictions were compared with the experimental results with reasonable agreement between them.  相似文献   

8.
9.
A thermodynamic finite-strain model describing the pseudoelastic response of shape memory alloys is proposed. The model is based on a self-consistent Eulerian theory of finite deformations using the logarithmic rate. Purely elastic material response is derived from a hyperelastic potential. The mass fraction of martensite is introduced as internal state variable to indicate the thermomechanical state of the phase transforming material. The evolution of martensite is governed by a kinetic law which is derived from the Helmholtz free energy of the two-phase solid and takes the heat generated during phase transition into account. The material model is implemented into a finite element code in an updated Lagrangian scheme and calibrated to experimental data. Simulations under different loading conditions illustrate the characteristics of the model.  相似文献   

10.
Shape memory polymers (SMPs) have gained strong research interests recently due to their mechanical action that exploits their capability to fix temporary shapes and recover their permanent shape in response to an environmental stimulus such as heat, electricity, irradiation, moisture or magnetic field, among others. Along with interests in conventional “dual-shape” SMPs that can recover from one temporary shape to the permanent shape, multi-shape SMPs that can fix more than one temporary shapes and recover sequentially from one temporary shape to another and eventually to the permanent shape, have started to attract increasing attention. Two approaches have been used to achieve multi-shape shape memory effects (m-SMEs). The first approach uses polymers with a wide thermal transition temperature whilst the second method employs multiple thermal transition temperatures, most notably, uses two distinct thermal transition temperatures to obtain triple-shape memory effects (t-SMEs). Recently, one of the authors’ group reported a triple-shape polymeric composite (TSPC), which is composed of an amorphous SMP matrix (epoxy), providing the system the rubber-glass transition to fix one temporary shape, and an interpenetrating crystallizable fiber network (PCL) providing the system the melt-crystal transition to fix the other temporary shape. A one-dimensional (1D) material model developed by the authors revealed the underlying shape memory mechanism of shape memory behaviors due to dual thermal transitions. In this paper, a three-dimension (3D) finite deformation thermomechanical constitutive model is presented to enable the simulations of t-SME under more complicated deformation conditions. Simple experiments, such as uniaxial tensions, thermal expansions and stress relaxation tests were carried out to identify parameters used in the model. Using an implemented user material subroutine (UMAT), the constitutive model successfully reproduced different types of shape memory behaviors exhibited in experiments designed for shape memory behaviors. Stress distribution analyses were performed to analyze the stress distribution during those different shape memory behaviors. The model was also able to simulate complicated applications, such as a twisted sheet and a folded stick, to demonstrate t-SME.  相似文献   

11.
基于非经典塑性理论和连续介质损伤力学,利用在一个特殊坐标系下基于椭球形孔洞模型得到的可考虑孔洞形状变化混合强化材料的损伤演化率得到了铁素体相的损伤本构方程,通过混合物理论利用铁素体和渗碳体相各自本构关系并考虑其几何特征得到了珠光体团的损伤本构模型。进而采用Hill自洽方法,得到了珠光体材料的宏观损伤本构描述,发展了相应的数值方法与程序。讨论了孔洞形状对材料损伤的影响,并对典型珠光体双相材料BS11在非对称循环加载史下的弹塑性响应特性进行了分析,得到了与实验较为一致的结果。  相似文献   

12.
This contribution deals with the nonlinear analysis of shape memory alloy (SMA) adaptive trusses employing the finite element method. Geometrical nonlinearities are incorporated into the formulation together with a constitutive model that describes different thermomechanical behaviors of SMA. It has four macroscopic phases (three variants of martensite and an austenitic phase), and considers different material properties for austenitic and martensitic phases together with thermal expansion. An iterative numerical procedure based on the operator split technique is proposed in order to deal with the nonlinearities in the constitutive formulation. This procedure is introduced into ABAQUS as a user material routine. Numerical simulations are carried out illustrating the ability of the developed model to capture the general behavior of shape memory bars. After that, it is analyzed the behavior of some adaptive trusses built with SMA actuators subjected to different thermomechanical loadings.  相似文献   

13.
A new version of rate-independent generalized plasticity, suitable for the derivation of general thermomechanical constitutive laws for materials undergoing phase transformations, is proposed within a finite deformation framework. More specifically, by assuming an additive decomposition of the finite strain tensor into elastic and inelastic (transformation induced) parts and by considering the fractions of the various material phases as internal variables, a multi-phase formulation of the theory is developed. The concepts presented are applied for the derivation of a three-dimensional thermomechanical model for shape memory alloy materials. The ability of the model in simulating several patterns of the extremely complex behavior of these materials, under both monotonic and cyclic loadings, is assessed by representative numerical examples.  相似文献   

14.
A new phenomenological inelastic constitutive model for rubberlike materials is presented and its good correspondence to cyclic measurements is demonstrated for both uniaxial tension- and simple shear-tests up to large deformations. The model implies strong nonlinearities, hysteresis, the influence of the loading history and remaining deformations after unloading. Results of finite element calculations are represented to show the suitability of the constitutive model within this method for practical applications.  相似文献   

15.
16.
A thermoviscoelastic constitutive model is developed for amorphous shape memory polymers (SMP) based on the hypothesis that structural and stress relaxation are the primary molecular mechanisms of the shape memory effect and its time-dependence. This work represents a new and fundamentally different approach to modeling amorphous SMPs. A principal feature of the constitutive model is the incorporation of the nonlinear Adam–Gibbs model of structural relaxation and a modified Eyring model of viscous flow into a continuum finite–deformation thermoviscoelastic framework. Comparisons with experiments show that the model can reproduce the strain–temperature response, the temperature and strain-rate dependent stress–strain response, and important features of the temperature dependence of the shape memory response. Because the model includes structural relaxation, the shape memory response also exhibits a dependence on the cooling and heating rates.  相似文献   

17.
Based on the micromechanical method and thermodynamic theory,a constitutive model for the macroscopic mechanical behavior of porous NiTi shape memory alloy is presented.The hydrostatic stress is considered for porous NiTi according to the transformation function of dense NiTi.The present model takes account of the tensile-compressive asymmetry of NiTi,and can degenerate to model dense material.Numerical calculations,which only need material parameters of dense NiTi,are conducted to investigate the nonlinear and hysteretic strain of porous NiTi,and the predicted results are in good agreement with the corresponding experiments.  相似文献   

18.
In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials is derived. The evolution equation for the active yield surface with reference to the memory yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function for pressure insensitive and sensitive materials. Detailed incremental constitutive relations for materials based on the Mises yield function, the Hill quadratic anisotropic yield function and the Drucker–Prager yield function are derived as the special cases. The closed-form solutions for one-dimensional stress–plastic strain curves are also derived and plotted for materials under cyclic loading conditions based on the three yield functions. In addition, the closed-form solutions for one-dimensional stress–plastic strain curves for materials based on the isotropic Cazacu–Barlat yield function under cyclic loading conditions are summarized and presented. For materials based on the Mises and the Hill anisotropic yield functions, the stress–plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. For materials based on the Drucker–Prager and Cazacu–Barlat yield functions, the stress–plastic strain curves do not close and show the ratcheting effect under uniaxial cyclic loading conditions. The ratcheting effect is due to different strain ranges for a given stress range for the unloading and reloading processes. With these closed-form solutions, the important effects of the yield surface geometry on the cyclic plastic behavior due to the pressure-sensitive yielding or the unsymmetric behavior in tension and compression can be shown unambiguously. The closed form solutions for the Drucker–Prager and Cazacu–Barlat yield functions with the associated flow rule also suggest that a more general anisotropic hardening theory needs to be developed to address the ratcheting effects for a given stress range.  相似文献   

19.
A thermomechanical boundary value problem and constitutive model are presented for a shape memory alloy (SMA) wire under uniaxial loading. The intent is to develop a one-dimensional continuum model of an SMA element that includes all the relevant thermomechanical couplings and is suitable for inclusion in finite element analyses. Thermodynamic relations are derived from phenomenological considerations consistent with recent experimental observations and are calibrated to a typical commercially available NiTi wire material. The model includes both temperature-induced and stress-induced transformations that are necessary to exhibit the shape memory effect and pseudoelastic behaviors. The model accommodates possible unstable mechanical behavior during stress-induced transformations by allowing softening transformation paths and including strain gradient effects. This should provide a tool to study propagating transformation fronts and localized latent heat transfer with the surroundings and a variety of interesting future structural applications, such as composites with embedded SMA elements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号