首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plasticity 22, 279-313], that the coexisting active and frozen phases of the polymer and the transitions between them provide the underlying mechanisms for strain storage and recovery during a shape memory cycle. General constitutive functions for nonlinear thermoelastic materials are used for the active and frozen phases. Also used is an internal state variable which describes the volume fraction of the frozen phase. The material behavior of history dependence in the frozen phase is captured by using the concept of frozen reference configuration. The relation between the overall deformation and the stress is derived by integration of the constitutive equations of the coexisting phases. As a special case of the nonlinear constitutive model, a neo-Hookean type constitutive function for each phase is considered. The material behaviors in a shape memory cycle under uniaxial loading are examined. A linear constitutive model is derived from the nonlinear theory by considering small deformations. The predictions of this model are compared with experimental measurements.  相似文献   

2.
A new method for determining the overall behavior of composite materials comprising nonlinear viscoelastic and elasto-viscoplastic constituents is presented. Part I of this work showed that upon use of an implicit time-discretization scheme, the evolution equations describing the constitutive behavior of the phases can be reduced to the minimization of an incremental energy function. This minimization problem is rigorously equivalent to a nonlinear thermoelastic problem with a transformation strain which is a nonuniform field (not even uniform within the phases). In part I of this paper the nonlinearity was handled using a variational (or secant) technique. In this second part of the study, a proper modification of the second-order procedure of Ponte Castañeda is proposed and leads to replacing, at each time-step, the actual nonlinear viscoelastic composite by a linear viscoelastic one. The linearized problem is even further simplified by using an “effective internal variable” in each individual phase. The resulting predictions are in good agreement with exact results and improve on the predictions of the secant model proposed in part I of this paper.  相似文献   

3.
4.
In this Part I, of a two-part paper, we present a detailed continuum-mechanical development of a thermo-mechanically coupled elasto-viscoplasticity theory to model the strain rate and temperature dependent large-deformation response of amorphous polymeric materials. Such a theory, when further specialized (Part II) should be useful for modeling and simulation of the thermo-mechanical response of components and structures made from such materials, as well as for modeling a variety of polymer processing operations.  相似文献   

5.
A thermoviscoelastic constitutive model is developed for amorphous shape memory polymers (SMP) based on the hypothesis that structural and stress relaxation are the primary molecular mechanisms of the shape memory effect and its time-dependence. This work represents a new and fundamentally different approach to modeling amorphous SMPs. A principal feature of the constitutive model is the incorporation of the nonlinear Adam–Gibbs model of structural relaxation and a modified Eyring model of viscous flow into a continuum finite–deformation thermoviscoelastic framework. Comparisons with experiments show that the model can reproduce the strain–temperature response, the temperature and strain-rate dependent stress–strain response, and important features of the temperature dependence of the shape memory response. Because the model includes structural relaxation, the shape memory response also exhibits a dependence on the cooling and heating rates.  相似文献   

6.
A new model for the behavior of polycrystalline shape memory alloys (SMA), based on a statically constrained microplane theory, is proposed. The new model can predict three-dimensional response by superposing the effects of inelastic deformations computed on several planes of different orientation, thus reproducing closely the actual physical behavior of the material. Due to the structure of the microplane algorithm, only a one-dimensional constitutive law is necessary on each plane. In this paper, a simple constitutive law and a robust kinetic expression are used as the local constitutive law on the microplane level. The results for SMA response on the macroscale are promising: simple one-dimensional response is easily reproduced, as are more complex features such as stress-strain subloops and tension-compression asymmetry. A key feature of the new model is its ability to accurately represent the deviation from normality exhibited by SMAs under nonproportional loading paths.  相似文献   

7.
8.
Shape memory polymers (SMPs) have gained strong research interests recently due to their mechanical action that exploits their capability to fix temporary shapes and recover their permanent shape in response to an environmental stimulus such as heat, electricity, irradiation, moisture or magnetic field, among others. Along with interests in conventional “dual-shape” SMPs that can recover from one temporary shape to the permanent shape, multi-shape SMPs that can fix more than one temporary shapes and recover sequentially from one temporary shape to another and eventually to the permanent shape, have started to attract increasing attention. Two approaches have been used to achieve multi-shape shape memory effects (m-SMEs). The first approach uses polymers with a wide thermal transition temperature whilst the second method employs multiple thermal transition temperatures, most notably, uses two distinct thermal transition temperatures to obtain triple-shape memory effects (t-SMEs). Recently, one of the authors’ group reported a triple-shape polymeric composite (TSPC), which is composed of an amorphous SMP matrix (epoxy), providing the system the rubber-glass transition to fix one temporary shape, and an interpenetrating crystallizable fiber network (PCL) providing the system the melt-crystal transition to fix the other temporary shape. A one-dimensional (1D) material model developed by the authors revealed the underlying shape memory mechanism of shape memory behaviors due to dual thermal transitions. In this paper, a three-dimension (3D) finite deformation thermomechanical constitutive model is presented to enable the simulations of t-SME under more complicated deformation conditions. Simple experiments, such as uniaxial tensions, thermal expansions and stress relaxation tests were carried out to identify parameters used in the model. Using an implemented user material subroutine (UMAT), the constitutive model successfully reproduced different types of shape memory behaviors exhibited in experiments designed for shape memory behaviors. Stress distribution analyses were performed to analyze the stress distribution during those different shape memory behaviors. The model was also able to simulate complicated applications, such as a twisted sheet and a folded stick, to demonstrate t-SME.  相似文献   

9.
In tube flow of healthy human blood the formed elements typically migrate away from vessel walls, leaving a plasma-rich, cell-depleted region there. In larger tubes (corresponding in size to arteries, for example) and at physiologically realistic flow rates, very thin wall boundary layers may develop which, nonetheless, have an impact upon the bulk flow properties. In this paper the non-homogeneous blood model of Moyers-Gonzalez et al. [M. Moyers-Gonzalez, R.G. Owens and J. Fang, A non-homogeneous constitutive model for human blood. Part I. Model derivation and steady flow, submitted for publication] is used in combination with a novel matched asymptotic method, to study the boundary layer behaviour of the steady tube flow of blood at high Péclet numbers PePe and in vessels of diameters corresponding to those of small arteries. A boundary layer thickness of O(Pe−1/2)O(Pe1/2) is predicted. In the absence of stress diffusion (the homogeneous case, with Pe=∞Pe=) no cell migration takes place and the size and number density of red cell aggregates along the axis of symmetry remains constant at all flow rates. In the non-homogeneous case, however, even at very high values of PePe, particles migrate, introducing a thin apparent slip layer next to the wall and affecting the aggregate distribution throughout the flow, even on the axis of symmetry.  相似文献   

10.
This paper presents a generalized Zaki-Moumni (ZM) model for shape memory alloys (SMAs) [cf. Zaki, W., Moumni, Z., 2007a. A three-dimensional model of the thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55, 2455-2490 accounting for thermomechanical coupling. To this end, the expression of the Helmholtz free energy is modified in order to derive the heat equation in accordance with the principles of thermodynamics. An algorithm is proposed to implement the coupled ZM model into a finite element code, which is then used to solve a thermomechanical boundary value problem involving a superelastic SMA structure. The model is validated against experimental data available in the literature. Strain rate dependence of the mechanical pseudoelastic response is taken into account with good qualitative as well as quantitative accuracy in the case of moderate strain rates and for mechanical results in the case of high strain rates. However, only qualitative agreement is achieved for thermal results at high strain rates. It is shown that this discrepancy is mainly due to localization effects which are note taken into account in our model. Analyzing the influence of the heat sources on the material response shows that the mechanical hysteresis is mainly due to intrinsic dissipation, whereas the thermal response is governed by latent heat. In addition, the variation of the area of the hysteresis loop with respect to the strain rate is discussed. It is found that this variation is not monotonic and reaches a maximum value for a certain value of strain rate.  相似文献   

11.
This paper presents a new phenomenological constitutive model for shape memory alloys, developed within the framework of irreversible thermodynamics and based on a scalar and a tensorial internal variable. In particular, the model uses a measure of the amount of stress-induced martensite as scalar internal variable and the preferred direction of variants as independent tensorial internal variable. Using this approach, it is possible to account for variant reorientation and for the effects of multiaxial non-proportional loadings in a more accurate form than previously done. In particular, we propose a model that has the property of completely decoupling the pure reorientation mechanism from the pure transformation mechanism. Numerical tests show the ability to reproduce main features of shape memory alloys in proportional loadings and also to improve prediction capabilities under non-proportional loadings, as proven by the comparison with several experimental results available in the literature.  相似文献   

12.
Properties of the micromorphic theory proposed in Part II are discussed for the case of small deformations. Model responses for beam specimens under bending loading and plates with circular holes under tension loading are calculated by employing the finite element method. The results reported are concerned with the capabilities of the theory to predict size effects.  相似文献   

13.
In this paper, a modified Lindstedt-Poincare method is proposed. In this technique, we introduce a new transformation of the independent variable. This transformation will also allow us to avoid the occurrence of secular terms in the perturbation series solution. Some examples are given here to illustrate its effectiveness and convenience. The results show that the obtained approximate solutions are uniformly valid on the whole solution domain, and they are suitable not only for weakly non-linear systems, but also for strongly non-linear systems.  相似文献   

14.
15.
16.
The familiar small strain thermodynamic 3D theory of isotropic pseudoelasticity proposed by Raniecki and Lexcellent is generalized to account for geometrical effects. The Mandel concept of mobile isoclinic, natural reference configurations is used in order to accomplish multiplicative decomposition of total deformation gradient into elastic and phase transformation (p.t.) parts, and resulting from it the additive decomposition of Eulerian strain rate tensor. The hypoelastic rate relations of elasticity involving elastic strain rate are derived consistent with hyperelastic relations resulting from free energy potential. It is shown that use of Jaumann corotational rate of stress tensor in rate constitutive equations formulation proves to be convenient. The formal equation for p.t. strain rate , describing p.t. deformation effects is proposed, based on experimental evidence. Phase transformation kinetics relations are presented in objective form. The field, coupled problem of thermomechanics is specified in rate weak form (rate principle of virtual work, and rate principle of heat transport). It is shown how information on the material behavior and motion inseparably enters the rate virtual work principle through the familiar bridging equation involving Eulerian rate of nominal stress tensor.
  相似文献   

17.
We have previously discovered a novel shape memory effect and pseudoelastic behavior in single-crystalline face-centered-cubic metal (Cu, Ni, and Au) nanowires. Under tensile loading and unloading, these wires can undergo recoverable elongations of up to 50%, well beyond the recoverable strains of 5-8% typical for most bulk shape memory alloys. This phenomenon only exists at the nanoscale and is associated with a reversible lattice reorientation driven by the high surface-stress-induced internal stresses. We present here a micromechanical continuum model for the unique tensile behavior of these nanowires. Based on the first law of thermodynamics, this model decomposes the lattice reorientation process into two parts: a reversible, smooth transition between a series of phase-equilibrium states and a superimposed irreversible, dissipative twin boundary propagation process. The reversible part is modeled within the framework of strain energy functions with multiple local minima. The irreversible, dissipative nature of the twin boundary propagation is due to the ruggedness of strain energy curves associated with dislocation nucleation, glide, and annihilation. The model captures the major characteristics of the unique behavior due to lattice reorientation and accounts for the size and temperature effects, yielding results that are in excellent agreement with the results of molecular dynamics simulations.  相似文献   

18.
In this paper, a modified Lindstedt-Poincare method is proposed. In this technique, a constant, rather than the non-linear frequency, is expanded in powers of the expanding parameter to avoid the occurrence of secular terms in the perturbation series solution. Some examples are given here to illustrate its effectiveness and convenience. The results show that the obtained approximate solutions are uniformly valid on the whole solution domain, and they are suitable not only for weakly non-linear systems, but also for strongly non-linear systems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号