首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Based on stress field equations and Hill yield criterion, the crack tip plastic zone is determined for orthotropic materials and isotropic materials under small-scale yielding condition. An analytical solution to calculating the crack tip plastic zone in plane stress states is presented. The shape and size of the plastic zone are analyzed under different loading conditions. The obtained results show that the crack tip plastic zones present “butterfly-like” shapes, and the elastic–plastic boundary is smooth. The size of the plastic zone for orthotropic composites is less at the crack tip for various loading conditions, compared with the case of isotropic materials. Crack inclination angle and loading conditions affect greatly the size and shape of crack tip plastic zone. The mode I crack has a crucial effect on the plastic zone for mixed mode case in plane stress state. The plastic zone for pure mode I crack and pure mode II crack have a symmetrical distribution to the initial crack plane.  相似文献   

2.
A modified polarization saturation model is proposed and addressed mathematically using a complex variable approach in two-dimensional(2 D) semipermeable piezoelectric media. In this model, an existing polarization saturation(PS) model in 2D piezoelectric media is modified by considering a linearly varying saturated normal electric displacement load in place of a constant normal electric displacement load, applied on a saturated electric zone. A centre cracked infinite 2D piezoelectric domain subject to an arbitrary poling direction and in-plane electromechanical loadings is considered for the analytical and numerical studies. Here, the problem is mathematically modeled as a non-homogeneous Riemann-Hilbert problem in terms of unknown complex potential functions representing electric displacement and stress components. Having solved the Hilbert problem, the solutions to the saturated zone length, the crack opening displacement(COD), the crack opening potential(COP), and the local stress intensity factors(SIFs) are obtained in explicit forms. A numerical study is also presented for the proposed modified model, showing the effects of the saturation condition on the applied electrical loading, the saturation zone length, and the COP. The results of fracture parameters obtained from the proposed model are compared with the existing PS model subject to electrical loading, crack face conditions, and polarization angles.  相似文献   

3.
Plastic yield at crack tips on singular slip-planes, inclined to the crack plane, has been studied under plane-strain conditions for combined tension, hydrostatic stress, and in-plane shear. The singular integral equation, which represents the equilibrium condition of edge dislocations on the slip-planes, is transformed into a Fredholm integral equation in order to avoid difficulties that occur with its numerical solution. Results are presented for the slip-band length, the plastic crack-tip opening displacement, stress fields, and crack-opening contours. A series expansion of the results obtained numerically confirms approximate analytical expressions given by J.R. Rice (1974), up to the third-order in the applied stresses. The results of finite element methods agree with values of the crack-tip opening displacement obtained here to within 10 per cent. Ahead of the crack tip, the principal tensile stresses exceed the principal shear stresses by a factor of 10, approximately.  相似文献   

4.
In previous work, the stresses of a mode I elastic–plastic fracture mechanics problem were analytically continued across a prescribed elastoplastic boundary for plane stress loading conditions involving a linear elastic/perfectly plastic material obeying the Tresca yield condition. Immediately across the elastic-plastic boundary, a nonlinear parabolic partial differential equation governs the plastic stress field. The present solution deals with stresses extending beyond the parabolic region into the hyperbolic region of the plastic zone. This analytical solution is obtained through a tranformation of the original system of nonlinear partial differential equations into a linear system with constant coefficients. The solution, so obtained, is expressible in terms of elementary transcendental functions. It also exhibits a limiting line which passes through the crack tip. This feature of the solution suggests the formation of a plastic hinge in the material.  相似文献   

5.
The near crack line analysis method is used to investigate an eccentric crack loaded by shear forces in a finite width plate, and the analytical solution is obtained in this paper. The solution includes: the unit normal vector of the elastic–plastic boundary near the crack line, the elastic–plastic stress fields near crack line, variations of the length of the plastic zone along the crack line with an external loads, and the bearing capacity of a finite plate with a centric crack loaded by shear stress in the far field. The results obtained in this paper are sufficiently precise near the crack line because the assumptions of small scale yielding theory have not been made and no other assumptions have been taken. Subsequently, the present results are compared with the traditional line elastic fracture mechanical solutions and elastoplastic near field solutions under small scale yielding condition. On the basis of the minimum strain energy density (SED) theory, the minimum values of SED in the vicinity of the crack tip are determined, the initial growth orientation of crack are determined. It is found that the normalized load under large scale yielding condition is higher than those under small scale yielding condition when the length of the plastic zone is the same.  相似文献   

6.
The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displacement-displacement boundary condi- tions, and the circular boundary of the wedge is free from any traction. The new finite complex transforms are employed to solve the problem. These finite complex transforms have complex analogies to both kinds of standard finite Mellin transforms. The traction free condition on the crack faces is expressed as a singular integral equation by using the exact analytical method. The explicit terms for the strength of singularity are extracted, showing the dependence of the order of the stress singularity on the wedge angle, material constants, and boundary conditions. A numerical method is used for solving the resul- tant singular integral equations. The displacement boundary condition may be a general term of the Taylor series expansion for the displacement prescribed on the radial edge of the wedge. Thus, the analysis of every kind of displacement boundary conditions can be obtained by the achieved results from the foregoing general displacement boundary condition. The obtained stress intensity factors (SIFs) at the crack tips are plotted and compared with those obtained by the finite element analysis (FEA).  相似文献   

7.
Plane-strain yielding from a crack in an infinite elastic body is represented here by a distribution of edge dislocations on two planes inclined at angles ±ga to the crack plane, and the equilibrium condition is solved numerically. Approximate analytical expressions are obtained for the plastic-zone length, the crack opening displacement, and the J-integral, as functions of the applied stress and α. A comparison with a co-planar model of the plastic zone gives very similar results for α ≈ 65°. It is shown that fracture criteria based either on a critical crack opening displacement (COD) or on a critical value of J are always different, and the use of the former may lead to critical defect-sizes which are twice as large as those given by the latter. Furthermore, COD appears not to be a well-defined material property. The critical J criterion gives a fracture stress which is α-dependent : this may be responsible for deviations towards results of linear elastic fracture mechanics when post-yield fracture mechanics is used to analyse extensive yielding. The changes in the stress field of the crack due to the existence of the plastic zone are also discussed.  相似文献   

8.
Plastic zone growth of collinear cracks has had a longstanding interest in ductile fracture. This work further considers yield zone growth in an isotropic, homogeneous elastic–perfectly plastic infinite plate containing a macrocrack with several neighboring microcracks. Normal loading is considered at distances far away from the cracks. The strip yield is adopted where the plastic zone is assumed to be confined to two narrow strips extending from the ends of a finite length crack while the microcracks are assumed to be elastic. The plastic zone length and crack opening displacement are found from asymptotic solution and compared with finite element solution.  相似文献   

9.
In the 1920s, a closed-form solution of the moving Griffith crack was first obtained by Yoffe. Based on Yoffe's solution, the Dugdale model for the moving crack case gives a good result. However, the Dugdale model fails when the crack speed is closed to the Rayleigh wave speed because of the discontinuity occurred in the crack opening displacement (COD). The problem is solved in this paper by introducing a restraining stress zone ahead of the crack tip and two velocity functions. The restraining stresses are linearly distributed and related to the velocity of the moving crack. An analytical solution of the problem is obtained by use of the superposition principle and a complex function method. The final result of the COD is continuous while the crack moves at a Rayleigh wave speed. The characteristics of the strain energy density (SED) and numerical results are discussed, and conclusions are given.  相似文献   

10.
Two-dimensional problems of finite-length blunted cracks cut into infinite plates subject to remote tractions are solved using complex variable theory. The slot geometry is composed of two flat surfaces connected by rounded ends. This special geometrical shape was derived by Riabouchinsky in the study of two-dimensional ideal fluid flow around parallel plates. The simpler antiplane slotted plate problem is addressed initially for this geometry. From this exact solution, the equivalent of a Westergaard stress potential is found and applied to the two other principal modes of fracture, which are plane elasticity problems. For a plate subject to uniform radial tension at infinity, an analytical solution is obtained that will reduce to the familiar mode I singular crack solution as the separation between the parallel faces of the slot becomes zero. For finite-width mode I slots, the rounded ends have tensile tractions which terminate at the adjoining flat surfaces of the slot, which remain traction-free. In this respect, the finite-width mode I slot problem resembles a Barenblatt cohesive zone model of a plane crack or a Dugdale plastic strip model of a plane crack, although the tractions will vary in magnitude along the slot ends rather than remaining uniform as in the former type of crack problems. Similarly, in the case of the finite-width mode II slot problem, the rounded ends of the slot have shear tractions, while the flat surfaces remain load-free. A distinguishing feature of the mode II slot solution over the mode I slot problem is that the maximum in-plane shear stress is constant along the rounded ends of the slot. Because of this, those particular regions of the boundary can represent incipient plastic yield based on either the Mises or Tresca yield condition under plane strain loading conditions. In this way, the problem resembles the plastic strip models of Dugdale, Cherepanov, Bilby-Cottrell-Swinden, and others. Notably, the mode III slot problem also has a constant maximum shear stress along the curved portions of the slot, while the entire slot boundary remains traction-free, unlike the mode II slot problem. Consequently, the mode III slot problem represents both a generalization of the standard mode III crack problem geometry, while simultaneously satisfying the boundary conditions of a plastic strip model.  相似文献   

11.
The strain energy density theory and the near crack line analysis method are applied to investigate an eccentric crack loaded by two pairs of tensile point forces in a finite plate. The minimum values of SED in the vicinity of the crack tip are determined, the initial growth orientation of crack are determined. Obtained is the elastic-plastic solution near the crack line of an eccentric crack loaded by two pairs of point tensile forces under large scale yielding condition. More specifically, the near field solution contains the unit normal vector of the elastic-plastic boundary and the elastic-plastic stress field. The length of the plastic zone along the crack line is found to vary with the external load and the bearing capacity of a finite plate with an eccentric crack loaded by two pairs of tensile point forces. Compared with small scale yielding condition, the normalized load obtained is higher than those under small scale yielding condition when the length of the plastic zone is the same.  相似文献   

12.
The effect of residual stresses on the fracture behavior of a cracked weld joint is studied by making use of the continuous dislocation formulation. Considered are the plastic zone length of the strip model zone and the opening displacement of a crack that is normal to both weld line and base metal boundary; they depend on the character of the yield stresses for the base metal (BM), weld material (WM), and heat affected zone (HAZ). The crack driving force is found to increase with the tensile residual stress while crack initiation and growth are suppressed if the residual stress is compressive. Moreover, the plastic zone and crack opening displacement are found to decrease linearly with the HAZ yield strength as the HAZ width is increased for HAZ yield strength greater than that of BM.  相似文献   

13.
The distribution of stress, displacement and plastic strain in a rotating elastic–plastic solid disk of variable thickness in a power function form is investigated. The analysis is based on Tresca's yield condition, its associated flow rule and linear strain hardening material behavior. An analytical solution is obtained and numerical results are presented for different values of the geometric parameters. The validity of the solution is demonstrated by comparing the results with those for a uniform thickness disk available in the literature.  相似文献   

14.
An analytical technique is developed that reduces the unknown elastic-plastic boundary of a linear elastic-perfectly plastic material containing an elliptical hole under tensile plane stress loading conditions into an equivalent mathematical problem with known boundaries. This mathematical transformation may facilitate this problem’s solution by either analytical or numerical means. Yield is assumed to occur in this analysis under the Tresca yield criterion. An example elastic-plastic problem illustrating this method is drawn from existing literature in the form of a perturbation solution for an elliptical hole derived by a series expansion about a circular boundary.  相似文献   

15.
The plastic zone at a crack tip in a finite anisotropic body is studied. A boundary-value problem is formulated in terms of the components of the covariant displacement vector for small strains. Particular attention is given to the case of plain strain. In this case, a numerical solution is found for a long rectangular body with a central crack under tension. As a result, conditions for the occurrence and development of a plastic zone at the crack tip are established. A plastic zone on the lateral surface of the body is discovered. How both zones extend and coalesce is elucidated. The effect of anisotropy on the occurrence of a plastic zone is evaluated __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 7, pp. 29–44, July 2006.  相似文献   

16.
内聚力模型已经被广泛应用于需要考虑断裂过程区的裂纹问题当中,然而常用的数值方法应用于分析内聚力模型裂纹问题时还存在着一些不足,比如不能准确的给出断裂过程区的长度、需要网格加密等。为了克服这些缺点,论文构造了一个新型的解析奇异单元,并将之应用于基于内聚力模型的裂纹分析当中。首先将虚拟裂纹表面处的内聚力用拉格拉日插值的方法近似表示为多项式的形式,而多项式表示的内聚力所对应的特解可以被解析地给出。然后利用一个简单的迭代分析,基于内聚力模型的裂纹问题就可以被模拟出来了。最后,给出二个数值算例来证明本文方法的有效性。  相似文献   

17.
A strip electric saturation and mechanical yielding model solution is proposed for a piezoelectric plate cut along two equal collinear semi-permeable mode-I cracks with electrical polarization reaching a saturation limit and normal stress reaching a yield stress along a line segment in front of the cracks. By using Stroh formalism and complex variable technique, we derived the analytical solution for the field quantities. Three different situations are investigated when developed electrical saturation zone is bigger/smaller or equal to the developed mechanical yield zone. Numerical results show that the effect of different electric boundary conditions on the crack opening displacement and crack opening potential drop is significant and should not be ignored. The influence of electric load displacement on the energy release rate is also investigated for PZT-4, PZT-5H and BaTiO3 ceramics, and it may assists for the correct choosing of ceramic for specific job.  相似文献   

18.
A plane problem for two identical piezoelectric semi-infinite spaces adhered by means of a thin isotropic interlayer is considered. It is assumed that a crack of a limited electric permeability occurs in the interlayer parallel to its faces. Combined electromechanical loading is prescribed at infinity. It is assumed that the interlayer is softer than the adherent materials. To avoid the singularities, which are typical for the Griffith crack model, two distinct zones – a zone of mechanical yielding and a zone of electrical saturation – of unknown lengths are introduced as crack continuations. These lengths can be essentially different, with the zone of mechanical yielding significantly longer or shorter than the zone of electrical saturation. Assuming that the interlayer thickness tends to zero, a constant normal stress is prescribed in the zone of mechanical yielding and a saturated electrical displacement is prescribed in the zone of electrical saturation. Outside of these zones, the semi-infinite spaces are assumed to be perfectly bonded. This formulation results in a linear fracture mechanics problem with unknown pre-fracture zone lengths. The problem, formulated mathematically by a system of two equations of linear relationship, is solved exactly. The unknown yield and saturated zones lengths are found from the conditions of finiteness of stress and electrical displacement at the ends of these zones for the both cases when the electrical saturated zone is longer and shorter than the zone of mechanical yielding. It is shown that the same equation as for the Griffith crack model can be used for the determination of the electrical displacement in the crack region. The main results of the paper are obtained in the form of simple analytical equations which are convenient for engineering applications. Some numerical illustrations in graphical and tabular form show dependencies of the pre-fracture zone lengths, the energy release rate, the mechanical displacement and electrical potential jumps on the electromechanical loading and the electrical permeability of the crack medium.  相似文献   

19.
A number of plane stress numerical analyses of the mode I elastoplastic fracture mechanics problem have been performed in the past using the Huber–Mises yield criterion. This study employs instead the Tresca yield condition using an incremental theory of plasticity for a stationary crack. A commercial finite element program is used to solve the opening mode of fracture problem (mode I) for a square plate containing a central crack under generalized plane stress loading conditions. A biaxial uniform tensile traction is applied to the edges of a thin plate composed of a linear elastic non-work hardening material under small strain assumptions. The finite element results are compared with the analytical predictions of the Dugdale plastic strip model for a crack in an infinite plate subject to a biaxial uniform load at infinity.  相似文献   

20.
Summary An interface crack with an artificial contact zone at the right-hand side crack tip between two piezoelectric semi-infinite half-planes is considered under remote mixed-mode loading. Assuming the stresses, strains and displacements are independent of the coordinate x 2, the expression for the displacement jumps and stresses along the interface are found via a sectionally holomorphic vector function. For piezoceramics of the symmetry class 6 mm and for electrically permeable crack faces, the problem is reduced to a combined Dirichlet-Riemann boundary value problem which can be solved analytically. Further, analytical expressions for the stresses, electrical displacements, derivatives of elastic displacement jumps, stress and electrical intensity factors are found at the interface. Real contact zone lengths and the well-known oscillating solution are derived from the obtained solution as well. Analytical relationships between the fracture-mechanical parameters of various models are found, and recommendations are suggested concerning the application of numerical methods to the problem of an interface crack in the discontinuity area of a piezoelectric bimaterial. Received 16 March 1999; accepted for publication 31 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号