首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EuPdGe was prepared from the elements by reaction in a sealed tantalum tube in a high-frequency furnace. Magnetic susceptibility measurements show Curie-Weiss behavior above 60 K with an experimental magnetic moment of 8.0(1)μB/Eu indicating divalent europium. At low external fields antiferromagnetic ordering is observed at TN=8.5(5) K. Magnetization measurements indicate a metamagnetic transition at a critical field of 1.5(2) T and a saturation magnetization of 6.4(1)μB/Eu at 5 K and 5.5 T. EuPdGe is a metallic conductor with a room-temperature value of 5000±500 μΩ cm for the specific resistivity. 151Eu Mössbauer spectroscopic experiments show a single europium site with an isomer shift of δ=−9.7(1) mm/s at 78 K. At 4.2 K full magnetic hyperfine field splitting with a hyperfine field of B=20.7(5) T is observed. Density functional calculations show the similarity of the electronic structures of EuPdGe and EuPtGe. T-Ge interactions (T=Pd, Pt) exist in both compounds. An ionic formula splitting Eu2+T0Ge2− seems more appropriate than Eu2+T2+Ge4− accounting for the bonding in both compounds. Geometry optimizations of EuTGe (T=Ni, Pt, Pd) show weak energy differences between the two structural types.  相似文献   

2.
Ternary europium copper sulfide Eu2CuS3 have been investigated by X-ray diffraction, 151Eu Mössbauer spectroscopy, magnetic susceptibility, magnetization, and specific heat measurements. In this compound, Eu2+ and Eu3+ ions occupy two crystallographically independent sites. The 151Eu Mössbauer spectra indicate that the Eu2+ and Eu3+ ions exist in the molar ratio of 1:1, and the Debye temperatures of Eu2+ and Eu3+ are 180 and 220 K, respectively. In its magnetic susceptibility, the divergence between the zero-field cooled and field cooled susceptibilities appears below 3.4 K. The specific heat has a λ-type anomaly at the same temperature. From the field dependence of magnetization at 1.8 K, the Eu2+ ion was found to be in the ferromagnetic state with the saturation magnetization MS=6.7 μB.  相似文献   

3.
The title compound was prepared from the elements by reaction in a sealed tantalum tube at 1320 K followed by slow cooling to 970 K or, alternatively, in glassy carbon crucibles with HF melting. The crystal structure of Eu5Ga9 was refined from single-crystal data: Cmcm, a=4.613(1) Å, b=10.902(3) Å, c=26.097(6) Å, Z=4, RF=0.036, 811 structure factors and 46 variables. The structure is described as a three-dimensional network formed by gallium atoms with europium atoms embedded in the cavities. The bonding analysis (LMTO, ELF) confirmed this representation of the structure. Magnetic susceptibility measurements show Curie-Weiss behavior above 60 K with a magnetic moment per Eu atom of 8.12(1) μB, indicating divalent europium. Eu5Ga9 orders antiferromagnetically at 19.0(5) K with re-ordering at 6.0(5) K. The electrical resistivity shows a metallic temperature dependence and magnetic scattering. 151Eu Mössbauer spectroscopic experiments are compatible with divalent europium and show complex magnetic hyperfine field splitting below the ordering temperature.  相似文献   

4.
The novel binary europium silicide Eu3Si4 was synthesized from the elements. Its crystal structure is a derivative of the Ta3B4 type: space group Immm, a=4.6164(4) Å, b=3.9583(3) Å, c=18.229(1) Å, Z=2. In the structure, the silicon atoms form one-dimensional bands of condensed hexagons. Deviating from the prototype structure, a partial corrugation of the initially planar bands may be concluded from the analysis of the experimental electron density in the vicinity of the Si1 atoms. In the paramagnetic region, Eu3Si4 shows a 4f7 electronic configuration for the europium atoms. Two consecutive magnetic ordering transitions were found at 117 and 40 K. The first one is attributed to a ferromagnetic ordering of the Eu2 atoms; the second one is caused by a ferromagnetic ordering of the Eu1 atoms resulting in a ferrimagnetic ground state with a net magnetization of 7 μB at 1.8 K. The temperature dependence of the electrical resistivity reflects the metallic character of the investigated compound. Furthermore, the pronounced changes of the dρ/dT slope confirm the magnetic transitions. From bonding analysis with the electron localization function, Eu3Si4 shows a Zintl-like character and its electronic count balance can be written as (Eu1.83+)3(Si10.95−)2(Si21.8−)2, in good agreement with its magnetic behavior in the paramagnetic region.  相似文献   

5.
In a search for new luminescent biological probes, we synthesized calcium pyrophosphates doped with europium up to an atomic Eu/(Eu+Ca) ratio of 2%. They were prepared by coprecipitating a mixture of calcium and europium salts with phosphate. After heating at 900 °C in air, two phases coexisted, identified as the β calcium pyrophosphate form and EuPO4. Heating near 1250 °C in air, during the βα transformation, europium ions substitute for calcium ions in the α calcium pyrophosphate structure as demonstrated by the spectroscopic study. Europium ions with both valence states (divalent and trivalent) were observed in the samples. Following the synthesis procedure, partial reduction of Eu3+ took place even in an oxidizing atmosphere. The 0.5%-doped compound could serve as a sensitive probe in biological applications. Depending on the excitation wavelength, the luminescence occurs either in the red or in the blue regions, which discriminates it from parasitic signals arising from other dyes or organelles in live cells.  相似文献   

6.
The compound CeAu0.28Ge1.72 crystallizes in the ThSi2 structure type in the tetragonal space group I41/amd with lattice parameters a=b=4.2415(6) Å c=14.640(3) Å. CeAu0.28Ge1.72 is a polar intermetallic compound having a three-dimensional Ge/Au polyanion sub-network filled with Ce atoms. The magnetic susceptibility data show Curie-Weiss law behavior above 50 K. The compound orders ferromagnetically at ∼8 K with estimated magnetic moment of 2.48 μB/Ce. The ferromagnetic ordering is confirmed by the heat capacity data which show a rise at ∼8 K. The electronic specific heat coefficient (γ) value obtained from the paramagnetic temperature range 15-25 K is∼124(5) mJ/ mol K2. The entropy change due to the ferromagnetic transition is ∼4.2 J/mol K which is appreciably reduced compared to the value of R ln(2) expected for a crystal-field-split doublet ground state and/or Kondo exchange interactions.  相似文献   

7.
A novel tetranuclear complex, [Cu4L4] · Na · ClO4 (1) has been prepared from an interesting multidentate Schiff base ligand H2L resulting from the 1:1 condensation of 3-methoxysalicylaldehyde with benzhydrazide. The prepared complex has been characterized by elemental analysis, FT-IR, UV–Vis spectroscopy, electrochemical studies and single crystal X-ray diffraction analysis. The Cu4O4 cubane core consists of four μ3-phenoxo-bridged copper(II) atoms giving an approximately cubic array of alternating copper(II) and oxygen atoms. Magneto-structural correlations have been drawn from cryomagnetic susceptibility measurements over a wide range of temperature (2–300 K) under 0.5 T magnetic field. The measurements reveal both ferromagnetic and antiferromagnetic interactions in a 2J model [J11 = +13.6(4) cm−1 and J12 = −34.9(4) cm−1] which in turn results in an overall antiferromagnetic behaviour of the magnetic system.  相似文献   

8.
A series of rare-earth iron borates having general formula LnFe3(BO3)4 (Ln=Y, La-Nd, Sm-Ho) were prepared and their magnetic properties have been investigated by the magnetic susceptibility, specific heat, and 57Fe Mössbauer spectrum measurements. These borates show antiferromagnetic transitions at low temperatures and their magnetic transition temperatures increase with decreasing Ln3+ ionic radius from 22 K for LaFe3(BO3)4 to 40 K for TbFe3(BO3)4. In addition, X-ray diffraction, specific heat, and differential thermal analysis (DTA) measurements indicate that the phase transition occurs for the LnFe3(BO3)4 compounds with Ln=Eu-Ho, Y, and its transition temperature increases remarkably with decreasing Ln3+ ionic radius from 88 K for Ln=Eu to 445 K for Ln=Y.  相似文献   

9.
An original method using lithium-based liquid alloys has been developed, allowing studies on bulk graphite intercalation compounds with calcium and europium. We showed that binary and ternary compounds belonging to graphite-lithium-calcium and graphite-lithium-europium systems are synthesized in both cases for equivalent reaction conditions but amazingly with many different structural and physical properties. Concerning CaC6 and EuC6, even if their 2D unit cells are hexal, their c-axis stacking sequences lead to different symmetries. Regarding kinetical data, formation mechanisms of these graphite intercalation compounds appear comparable however different, with a first common step before differenciation in the intercalation mechanism. Obviously, their physical properties are strongly different due to the nature of the intercalated metallic element. So, the different ternary compounds from these systems also show very considerable differences concerning their electronic properties: complex magnetic ordering for Eu-based ternary GIC and superconducting behaviour for Ca-based ternary GIC. However, common points are highlighted.  相似文献   

10.
Unique magnetic properties of a ternary uranate Ba2U2O7 are reported. Magnetic susceptibility measurements reveal that this compound undergoes a magnetic transition at 19 K. Below this temperature, magnetic hysteresis was observed. The results of the low-temperature specific heat measurements below 30 K support the existence of the second-order magnetic transition at 19 K. Ba2U2O7 undergoes a canted antiferromagnetic ordering at this temperature. The magnetic anomaly which sets in at 58 K may be due to the onset of one-dimensional magnetic correlations associated with the linear chains formed by U ions. The analysis of the experimental magnetic susceptibility data in the paramagnetic temperature region gives the effective magnetic moment μeff=0.73 μB, the Weiss constant θ=−10 K, and the temperature-independent paramagnetic susceptibility χTIP=0.14×10−3 emu/mole.The magnetic susceptibility results and the optical absorption spectrum were analyzed on the basis of an octahedral crystal field model. The energy levels of Ba2U2O7 and the crystal field parameters were determined.  相似文献   

11.
Fluorination of the parent oxide, BaFeO3−δ, with polyvinylidine fluoride gives rise to a cubic compound with a=4.0603(4) Å at 298 K. 57Fe Mössbauer spectra confirmed that all the iron is present as Fe3+. Neutron diffraction data showed complete occupancy of the anion sites, indicating a composition BaFeO2F, with a large displacement of the iron off-site. The magnetic ordering temperature was determined as TN=645±5 K. Neutron diffraction data at 4.2 K established G-type antiferromagnetism with a magnetic moment per Fe3+ ion of 3.95 μB. However, magnetisation measurements indicated the presence of a weak ferromagnetic moment that is assigned to the canting of the antiferromagnetic structure. 57Fe Mössbauer spectra in the temperature range 10-300 K were fitted with a model of fluoride ion distribution that retains charge neutrality of the perovskite unit cell.  相似文献   

12.
Endo-Tricyclo[5.2.1.02,6]decane (CAS 6004-38-2) is an important intermediate compound for synthesizing diamantane. The lack of data on the thermodynamic properties of the compound limits its development and application. In this study, endo-Tricyclo[5.2.1.02,6]decane was synthesized and the low temperature heat capacities were measured with a high-precision adiabatic calorimeter in the temperature range from (80 to 360) K. Two phase transitions were observed: the solid-solid phase transition in the temperature range from (198.79 to 210.27) K, with peak temperature 204.33 K; the solid-liquid phase transition in the temperature range from 333.76 K to 350.97 K, with peak temperature 345.28 K. The molar enthalpy increments, ΔHm, and entropy increments, ΔSm, of these phase transitions are ΔHm=2.57 kJ · mol−1 and ΔSm=12.57 J · K−1 · mol−1 for the solid-solid phase transition at 204.33 K, and, ΔfusHm=3.07 kJ · mol−1 and ΔfusSm=8.89 J · K−1 · mol−1 for the solid-liquid phase transition at 345.28 K. The thermal stability of the compound was investigated by thermogravimetric analysis. TG result shows that endo-Tricyclo[5.2.1.02,6]decane starts to sublime at 300 K and completely changes into vapor when the temperature reaches 423 K, reaching the maximal rate of weight loss at 408 K.  相似文献   

13.
Neodymium and europium tungsten oxynitrides have been synthesized by the nitridation of corresponding R2W2O9 precursor oxides, in ammonia flow at 1173 K during 24 h. The obtained polycrystalline neodymium oxynitride phase, with NdWO3.05N0.95 composition, crystallizes with the tetragonal symmetry of the scheelite-type structure, space group S.G. I41/a (#88). The analogous europium derivative, with formula EuWO1.58N1.42, presents the cubic perovskite-type structure, S.G. (# 221). Unit-cell parameters, a=5.255(1) Å, c=11.399(3) Å, and a=3.976(3) Å, have been established from Rietveld refinements of collected X-ray powder diffraction patterns for the Nd and Eu- oxynitrides, respectively.Magnetic susceptibility measurements show that NdWO3.05N0.95 behaves as paramagnetic in a wide range of temperature T ∼50-300 K. The downwards deviation from the Curie-Weiss law below 40 K reflects the splitting of the 4I9/2 ground state of Nd3+ experienced under the influence of a S4 crystal field CF potential, as the successful reproduction of the magnetic susceptibility χ−1m vs. T, using semi-empirical structure-derived CF parameters, indicates. EuWO1.58N1.42 is paramagnetic down to 20 K, and the measured effective magnetic moment 8.01 μB is indicative of the presence of Eu2+ in this oxynitride. The observed sudden jump in the magnetic susceptibility at 20 K and the value of 6 μB for the saturation moment is attributed to the onset of ferrimagnetic interactions in which the Eu2+ and W5+ sublattices appear to be involved.  相似文献   

14.
A novel iron(II) coordination compound with tris(pyrazol-1-yl)methane (L) of the composition [FeL2][Fe(L)(NCS)3](NCS)·2H2O has been synthesized. Employing the XRD technique, its crystal structure has been determined. The compound was studied with the help of IR and UV-Vis spectroscopy and static magnetic susceptibility methods. A magnetochemical study of the complex within the temperature range 78-400 K has demonstrated that the compound exhibits a high-temperature spin crossover (SCO) 1А1 ⇔ 5Т2. The transition temperature amounts to 380 K.  相似文献   

15.
The synthesis, crystal structure and magnetic properties of the cyano-bridged complex [{Cu(cyclam)}3{Fe(CN)6}2] · 6H2O are reported. Its structure is made up of centrosymmetric S-shaped pentanuclear [{Cu(cyclam}3{Fe(CN)6)}2] units, in which three [Cu(cyclam)]2+ units are alternatively bridged by two trans-CN groups of [Fe(CN)6]3− anions and water molecules. The pentanuclear Fe2Cu3 units are held together by two complementary and very weak Fe–CN?Cu1 bonds, forming a rope-ladder chain along the c axis. The compound exhibits a ferromagnetic interaction between the Cu(II) and Fe(III) ions as a consequence of the orthogonality of their magnetic orbitals of σ and π nature, respectively. The magnetic data were fitted to the calculated magnetic susceptibility equation for a pentanuclear model, leading to the following magnetic parameters: J1 = 9.0(3) cm−1, J2 = 3.8(4) cm−1, g = 2.2, θ = −1.2 K. These results show that the interactions through the long Cu–N axial bonds are not so weak as is usually assumed.  相似文献   

16.
The new compound Cs4P2Se10 was serendipitously produced in high purity during a high-temperature synthesis done in a nuclear magnetic resonance (NMR) spectrometer. 31P magic angle spinning (MAS) NMR of the products of the synthesis revealed that the dominant phosphorus-containing product had a chemical shift of −52.8 ppm that could not be assigned to any known compound. Deep reddish brown well-formed plate-like crystals were isolated from the NMR reaction ampoule and the structure was solved with X-ray diffraction. Cs4P2Se10 has the triclinic space group P-1 with a=7.3587(11) Å, b=7.4546(11) Å, c=10.1420(15) Å, α=85.938(2)°, β=88.055(2)°, and γ=85.609(2)° and contains the [P2Se10]4− anion. To our knowledge, this is the first compound containing this anion that is composed of two tetrahedral (PSe4) units connected by a diselenide linkage. It was also possible to form a glass by quenching the melt in ice water, and Cs4P2Se10 was recovered upon annealing. The static 31P NMR spectrum at 350 °C contained a single peak with a −35 ppm chemical shift and a ∼7 ppm peak width. This study highlights the potential of solid-state and high-temperature NMR for aiding discovery of new compounds and for probing the species that exist at high temperature.  相似文献   

17.
We report the results of magnetic and specific heat measurements on the 1212-type compounds IrSr2RECu2O8 with RE=Sm and Eu, prepared by high-pressure and high-temperature synthesis. The magnetic susceptibility of these compounds shows a large difference in the temperature dependence of the magnetization measured under zero-field-cooled and field-cooled conditions below 87 and 71 K, respectively, and upon further cooling below ∼10 K substantial maxima are observed too. Further AC susceptibility measurements support a glassy behaviour in lower magnetic transitions whereas the specific heat measurements do not show the typical long-range ordering commonly displayed in ferro, ferri or antiferromagnetic transitions. Hysteresis loops suggest the presence of magnetic clusters in the otherwise paramagnetic zone, indicating that these compounds probably display a reentrant spin-glass transition. Results are presented and discussed.  相似文献   

18.
A selection of mixed conducting silver chalcogenide halides of the general formula Ag5Q2X with Q=sulfur, selenium and tellurium and X=chlorine and bromine has been investigated due to their thermoelectric properties. Recently, the ternary counterpart Ag5Te2Cl showed a defined d10-d10 interaction in the disordered cation substructure at elevated temperatures where Ag5Te2Cl is present in its high temperature α-phase. A significant drop of the thermal diffusivity has been observed during the β−α phase transition reducing the values from 0.12 close to 0.08 mm2 s−1. At the same transition the thermopower reacts on the increasing silver mobility and jumps towards less negative values.Thermal conductivities, thermopower and thermal diffusivity of selected compounds with various grades of anion substitution in Ag5Q2X were determined around the silver-order/disorder β−α phase transition. A formation of attractive interactions could be observed for selenium substituted phases while no effect was detected for bromide and sulfide samples. Depending on the grade and type of substitution the thermopower changes significantly at and after the β−α phase transition. Thermal conductivities are low reaching values around 0.2-0.3 W m−1 K−1 at 299 K. Partial anion exchange can substantially tune the thermoelectric properties in Ag5Q2X phases.  相似文献   

19.
The pseudo-hollandite chromium sulfides, ACr5S8 (A=K, Rb, Cs) and A′0.5Cr5S8 (A′=Sr, Ba), have been synthesized and investigated in structural and magnetic properties. All the compounds crystallize in the isostructure with a monoclinic C2/m. Its crystal structure has triangular lattices and double chains made of Cr3+ (d3; S=3/2) triangles. The magnetic susceptibilities of all compounds behave as Curie-Weiss types in high temperature region. From magnetic susceptibility and specific heat measurements, all the compounds have antiferromagnetic ground states. The Néel temperatures are rather low compared to Weiss temperatures, reflecting magnetic frustration in the triangular lattices and double chains. The magnetic transitions in KCr5S8 and Ba0.5Cr5S8 are a two-step transition around 50 and 60 K, respectively, while RbCr5S8 shows a sharp magnetic transition at 42 K, accompanied by magnetoelastic behavior. CsCr5S8 shows a structural transition around 100 K, followed by a magnetic transition at 10 K. In Sr0.5Cr5S8, ferromagnetic interaction develops below 100 K and then a three-dimensional antiferromagnetic order takes place at 30 K. These magnetic properties are discussed from A-cation dependences of local structures and a model of magnetic structure for RbCr5S8 is proposed on the basis of the arguments of magnetic interactions and neutron diffraction data. It is different from the known magnetic structure of TlCr5Se8.  相似文献   

20.
The ternary compound UFe7Al5 was synthesized by arc melting, followed by annealing at 850°C. The crystal structure was determined by single-crystal X-ray diffraction and refined to a residual value of R=0.039 (S=1.030), with lattice parameters a=8.581(2) Å and c=4.946(1) Å. This compound is a new extreme composition in the family of intermetallics with general formula UFexAl12−x crystallizing in the tetragonal ThMn12-type structure, space group I4/mmm. In contrast to UFexAl12−x within the composition range 4?x?6, in UFe7Al5 the additional iron atom is found in the 8i equipositions. Magnetization measurements versus temperature show two magnetic transitions at 363 and 275 K, respectively, with a ferromagnetic behavior below the highest temperature transition. 57Fe Mössbauer data indicate that the high-temperature transition is related to the ordering of the iron atoms. The dependence of the isomer shifts and magnetic hyperfine fields on the crystallographic site and on the number of the iron nearest neighbors is similar to that observed in the other UFexAl12−x and rare-earth analogues. The magnetic hyperfine field values of iron atoms on 8i sites is larger than in the other sites, in agreement with previous data obtained for other ThMn12-type compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号