首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this study, pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at 60 °C. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001%, 0.001%, 0.01%, and 0.05%. For the dispersion of CNTs, polyvinyl pyrrolidone polymer is used in distilled water. Pool boiling HTCs are taken from 10 kW/m2 to critical heat flux for all tested fluids. Test results show that the pool boiling HTCs of the aqueous solutions with CNTs are lower than those of pure water in the entire nucleate boiling regime. On the other hand, critical heat flux of the aqueous solution is enhanced greatly showing up to 200% increase at the CNT concentration of 0.001% as compared to that of pure water. This is related to the change in surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of the surface are decreased due to this layer. The thin CNT layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, decreases the contact angle on the test surface and extends the nucleate boiling regime to very high heat fluxes and reduces the formation of large vapor canopy at near CHF. Thus, a significant increase in CHF results in.  相似文献   

2.
The efficiency and effectiveness of solar energy capture and storage are to a large extent functions of the heat transfer and storage capacity of the medium used. This paper investigates the potential of using carbon nanotube (CNT)-glycol nanosuspension as such a medium, prepared by freeze drying-ultrasonic dispersing after oxidation treatment with HNO3. The influences of the mass fraction of CNTs glycol nanofluids and temperatures on photo-thermal properties, thermal conductivities and rheological behavior were investigated. The results show that CNTs with oxidation treatment exhibited good dispersing performance. Strong optical absorption of the CNTs glycol nanofluids was detected in the range of 200–2500 nm. At room temperature, 18% enhancement was found in the photo-thermal conversion efficiency of the 0.5% mass fraction CNTs glycol nanofluids in comparison to the basic fluids, without significant increase in viscosity. At 55 °C, CNTs glycol nanofluids with 4.0% mass fraction exhibited much lower viscosity and 25.4% higher thermal conductivity in comparison to that of pure glycol at room temperature.  相似文献   

3.
Three phase liquid–liquid–gas flow maps in pipes of medium inner diameters (5.6 mm and 7 mm), are presented. A low viscosity paraffin oil (4.5 × 10−3 Pa s viscosity and 818.5 kg m−3 density at 20 °C), deionised water and air are flowing concurrently in Schott Duran® glass pipes. A decreasing pipe diameter changes the flow pattern maps and also the behavior of the transition boundaries. Flow patterns are determined by high speed photography. To illuminate the pipe, laser induced fluorescence (LIF) is applied. The laser sheet is cutting through the axial vertical plane of the pipe. The laser light excites a fluorescent dye (uranine) in the water phase to separate the phases optically. The resulting flow maps are compared with literature data and a theoretical model.  相似文献   

4.
Free convection phenomenon has been experimentally investigated around a horizontal rod heater in carbonic acid solution. Because of the tendency of the solution to desorb carbon dioxide gas when temperature is increased, bubbles appear when cylinder surface is heated. The bubbles consists mainly carbon dioxide and also a negligible amount of water vapor. The results present that dissolved carbon dioxide in water significantly enhances the heat transfer coefficient in compare to pure free convection regime. This is mainly due to the microscale mixing on the heat transfer surface, which is induced by bubble formation. In this investigation, experiments are performed at different bulk temperatures between 288 and 333 K and heat fluxes up to 400 kW m−2 at atmospheric pressure. Bubble departure diameter, nucleation site density and heat transfer coefficient have been experimentally measured. A model has been proposed to predict the heat transfer coefficient.  相似文献   

5.
Severe numerical instability in the integration of rate dependent crystal plasticity (RDCP) model is one of the main problems for implementing RDCP into finite element method (FEM), especially for simulating dynamic/transient forming process containing complicated contact conditions under large step length, large strain and high strain rate. In order to overcome the problem, an implicit model is deduced with the primary unknowns of shear strain increments of slip systems under the corotational coordinate system in the paper. The homotopy auto-changing continuation method combined with the Newton–Raphson (N–R) iteration is adopted. The subroutine VUMAT is developed for implementing RDCP model in ABAQUS/Explicit. Simulation results show that the algorithm is stable and accurate in 3D FE simulations on both dynamic simple loading and complicated loading process containing nonlinear contacts under the conditions of the maximal step length of 3.5 × 10−6 s, the maximal strain of 1.05, the maximal loading speed of 120 mm s−1, and the minimal material rate sensitivity coefficient of 0.01. The predictions of the model on crystal behaviors of anisotropy, rate sensitivity and elasticity, as well as ear profiles in deep cup drawing are in agreement with experiments.  相似文献   

6.
This paper presents the performance characteristics of a solar water heating system consisting of a 3 m2 flat plate collector and a 68 L tank, from readings taken over a period of 2 years under real weather conditions. It focuses on the characteristics and the behavior of the system, its response to solar radiation and hot water flow rate through the collector under no load conditions and in the evaluation of the errors associated with the system performance measurements. The system behavior proved to be linear with small relative standard deviations (less than 15%) within the values of the calculated errors and also relatively insensitive to solar radiation fluctuations ranging from 800 to 1100 W/m2. Flow rate variations from 0.07 and up to 0.25 L/s did not produce any noticeable effects on the energy collected in the storage tank of the system under investigation. The calculated absolute errors in the system instantaneous efficiency ranged from 34% for low flow and up to 20% for the high flows.  相似文献   

7.
Functionalized carbon nanotubes have tremendous potential for nanotechnology applications such as in the fabrication of polymeric carbon fibers. However, approaches to design carbon nanotube structures by using functional groups as glue and carbon nanotubes as stiff building blocks to reach superior mechanical strength and toughness at the fiber level with limited amount of materials remains poorly understood. Inspired by the outstanding mechanical properties of spider silk, here we present a bio-inspired structural model of carbon nanotube based fibers connected by weak hydrogen bonds (H-bonds) formed between functional carboxyl groups as the molecular interface. By applying shear loading, we study how the deformation of H-bonds in functional groups is affected by the structural organization of the carboxyl groups, as well as by the geometry of constituting carbon nanotubes. The analysis of H-bond deformation fields is used to compute the extent of significant deformation of inter-CNT bonds, defining a region of cooperativity. We utilize an exponential function (exp (?x/ξ)) to fit the deformation of H-bonds, with the cooperative region defined by the parameter ξ, and where a higher value of ξ represents a weaker exponential decay of displacements of carboxyl groups from the point where the load is applied. Hence, the parameter ξ characterizes the number of carboxyl groups that participate in the deformation of CNTs under shear loading. The cooperativity of deformation is used as a measure for the utilization of the chemical bonds facilitated by the functional groups. We find that for ultra-small diameter CNTs below 1 nm the external force deforms H-bonds significantly only within a relatively small region on the order of a few nanometers. We find that the mechanical properties of carbon nanotube fibers are affected by the organization of H-bonds in functional carboxyl groups. Both, the grouping of functional groups into clusters, and a specific variation of the clustering of functional groups along the CNT axis are shown to be potential strategies to improve the cooperativity of deformation. This allows for a more effective utilization of functional groups and hence, larger overlap lengths between CNTs in fibers. The effect of structural organization of functional groups is not only significant in very small diameter CNTs, but also in larger diameter CNTs as they are most commonly used for engineering applications. Notably larger-diameter CNTs naturally show a larger cooperative deformation range. Our model can be applied to other functional groups attached to CNTs, and could in principle also include strong bonds such as covalent or ionic bonds, or other weak bonds such van der Waals forces or dipole–dipole interactions.  相似文献   

8.
The instability of circular liquid jet immersed in a coflowing high velocity air stream is studied assuming that the flow of the viscous gas and liquid is irrotational. The basic velocity profiles are uniform and different. The instabilities are driven by Kelvin–Helmholtz instability due to a velocity difference and neckdown due to capillary instability. Capillary instabilities dominate for large Weber numbers. Kelvin–Helmholtz instability dominates for small Weber numbers. The wavelength for the most unstable wave decreases strongly with the Mach number and attains a very small minimum when the Mach number is somewhat larger than one. The peak growth rates are attained for axisymmetric disturbances (n = 0) when the viscosity of the liquid is not too large. The peak growth rates for the first asymmetric mode (n = 1) and the associated wavelength are very close to the n = 0 mode; the peak growth rate for n = 1 modes exceeds n = 0 when the viscosity of the liquid jet is large. The effects of viscosity on the irrotational instabilities are very strong. The analysis predicts that breakup fragments of liquids in high speed air streams may be exceedingly small, especially in the transonic range of Mach numbers.  相似文献   

9.
Fluid forces on a very low Reynolds number airfoil and their prediction   总被引:1,自引:0,他引:1  
This paper presents the measurements of mean and fluctuating forces on an NACA0012 airfoil over a large range of angle (α) of attack (0-90°) and low to small chord Reynolds numbers (Rec), 5.3 × 103-5.1 × 104, which is of both fundamental and practical importance. The forces, measured using a load cell, display good agreement with the estimate from the LDA-measured cross-flow distributions of velocities in the wake based on the momentum conservation. The dependence of the forces on both α and Rec is determined and discussed in detail. It has been found that the stall of an airfoil, characterized by a drop in the lift force and a jump in the drag force, occurs at Rec ? 1.05 × 104 but is absent at Rec = 5.3 × 103. A theoretical analysis is developed to predict and explain the observed dependence of the mean lift and drag on α.  相似文献   

10.
The heat transfer coefficients of the evaporative water flow in mini/microchannels are studied experimentally to explore the novel heat dissipation for high power electronics. Two sets of parallel channels which are 61 channels with hydraulic diameter of 0.293 mm and 20 channels with hydraulic diameter of 1.2 mm are investigated respectively. The inlet and outlet temperatures of fluids, and the temperatures beneath the channels are measured to calculate the heat dissipation of the evaporative water in channels. The experiments are carried out with the mass flow rates range from 11.09 kg/(m2 s) to 44.36 kg/(m2 s) for minichannels and 49.59 kg/(m2 s) to 198.37 kg/(m2 s) for microchannels. The effective heat flux range from 5 W/cm2 to 50 W/cm2, and the resulted outlet vapor qualities range from 0 to 0.8. The relations of the heat transfer coefficient with heat flux and vapor quality are analyzed according to the results. The experimental heat transfer coefficients are compared with the prediction of latest developed correlations. A new correlation takes the effect of Bond number is proposed, and be verified that it is effective to predict the heat transfer coefficient of both minichannels and microchannels in a large range of vapor qualities.  相似文献   

11.
The condensation heat transfer coefficients of R-22, R-134a and R-410A in a single circular microtube were investigated experimentally. The experiments are conducted without oil in the refrigerant loop. The test section is a smooth, horizontal copper tube of 1.77 mm inner diameter. The experiments were conducted at mass flux of 450-1050 kg/m2 s, saturation temperature of 40 °C. The test results showed that in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski correlation. In case of two-phase flow, the condensation heat transfer coefficient of R-410A was higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensing heat transfer. And also, recently proposed correlation in the single circular microtube is considered not adequate for small diameter tube. Therefore, it is necessary to develop accurate and reliable correlation to predict heat transfer characteristics in the single circular microtube.  相似文献   

12.
Compared with conventional graphite anode, hard carbons have the potential to make reversible lithium storage below 0 V accessible due to the formation of dendrites is slow. However, under certain conditions of high currents and lithiation depths, the irreversible plated lithium occurs and then results in the capacity losses. Herein, we systematically explore the true reversibility of hard carbon anodes below 0 V. We identify the lithiation boundary parameters that control the reversible capacity of hard carbon anodes. When the boundary capacity is controlled below 400 mAh g−1 with current density below 50 mA g−1, no lithium dendrites are observed during the lithiation process. Compared with the discharge cut-off voltage to 0 V, this boundary provides a nearly twice reversible capacity with the capacity retention of 80% after 172 cycles. The results of characterization and finite element model reveal that the large reversible capacity below 0 V of hard carbon anodes is mainly benefited from the dual effect of lithium intercalation and reversible lithium film. After the lithium intercalation, the over-lithiation induces the quick growth of lithium dendrites, worsening the electrochemical irreversibility. This work enables insights of the potentially low-voltage performance of hard carbons in lithium-ion batteries.  相似文献   

13.
Modeling the strengthening effect of grain boundaries (Hall-Petch effect) in metallic polycrystals in a physically consistent way, and without invoking arbitrary length scales, is a long-standing, unsolved problem. A two-scale method to treat predictively the interactions of large numbers of dislocations with grain boundaries has been developed, implemented, and tested. At the first scale, a standard grain-scale simulation (GSS) based on a finite element (FE) formulation makes use of recently proposed dislocation-density-based single-crystal constitutive equations (“SCCE-D”) to determine local stresses, strains, and slip magnitudes. At the second scale, a novel meso-scale simulation (MSS) redistributes the mobile part of the dislocation density within grains consistent with the plastic strain, computes the associated inter-dislocation back stress, and enforces local slip transmission criteria at grain boundaries.Compared with a standard crystal plasticity finite element (FE) model (CP-FEM), the two-scale model required only 5% more CPU time, making it suitable for practical material design. The model confers new capabilities as follows:
(1)
The two-scale method reproduced the dislocation densities predicted by analytical solutions of single pile-ups.
(2)
Two-scale simulations of 2D and 3D arrays of regular grains predicted Hall-Petch slopes for iron of 1.2 ± 0.3 MN/m3/2 and 1.5 ± 0.3 MN/m3/2, in agreement with a measured slope of 0.9 ± 0.1 MN/m3/2.
(3)
The tensile stress-strain response of coarse-grained Fe multi-crystals (9-39 grains) was predicted 2-4 times more accurately by the two-scale model as compared with CP-FEM or Taylor-type texture models.
(4)
The lattice curvature of a deformed Fe-3% Si columnar multi-crystal was predicted and measured. The measured maximum lattice curvature near grain boundaries agreed with model predictions within the experimental scatter.
  相似文献   

14.
An experimental study of evaporation heat transfer coefficients for single circular small tubes was conducted for the flow of C3H8, NH3, and CO2 under various flow conditions. The test matrix encompasses the entire quality range from 0.0 to 1.0, mass fluxes from 50 to 600 kg m−2 s−1, heat fluxes from 5 to 70 kW m−2, and saturation temperatures from 0 to 10 °C. The test section was made of circular stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm in a horizontal orientation. The test section was uniformly heated by applying electric power directly to the tubes. The effects of mass flux, heat flux, saturation temperature, and inner tube diameter on the heat transfer coefficient are reported. Among the working refrigerants considered in this study, CO2 has the highest heat transfer coefficient. Laminar flow was observed in the evaporative small tubes, and was considered in the modification of boiling heat transfer coefficients and pressure drop correlations.  相似文献   

15.
Free-surface fluctuations and turbulence in hydraulic jumps   总被引:1,自引:0,他引:1  
A hydraulic jump is the highly turbulent transition between a high-velocity impinging flow and a turbulent roller. The jump flow is characterised by some substantial air bubble entrainment, spray and splashing. In the present study, the free-surface fluctuations and air-water properties of the hydraulic jump roller were investigated physically for relatively small Froude numbers (2.4 < Fr1 < 5.1) and relatively large Reynolds numbers (6.6 × 104 < Re < 1.3 × 105). The shape of the mean free surface profile was well defined, and the time-averaged free-surface elevation corresponded to the upper free-surface, with the quantitative values being close to the equivalent clear-water depth. The turbulent fluctuation profiles exhibited a maximum in the first part of the hydraulic jump roller. The free-surface fluctuations presented some characteristic frequencies between 1.4 and 4 Hz. Some simultaneous free-surface measurements at a series of two closely located points yielded the free-surface length and time scales of free-surface fluctuations in terms of both longitudinal and transverse directions. The length scale data seemed to depend upon the inflow Froude number, while the time scale data showed no definite trend. Some simultaneous measurements of instantaneous void fraction and free-surface fluctuations exhibited different features depending upon the phase-detection probe sensor location in the different regions of the roller.  相似文献   

16.
17.
Experimental results of adiabatic boiling of water flowing through a fractal-like branching microchannel network are presented and compared to numerical model simulations. The goal is to assess the ability of current pressure loss models applied to a bifurcating flow geometry. The fractal-like branching channel network is based on channel length and width ratios between adjacent branching levels of 2−1/2. There are four branching sections for a total flow length of 18 mm, a channel height of 150 μm and a terminal channel width of 100 μm. The channels were Deep Reactive Ion Etched (DRIE) into a silicon disk. A Pyrex disk was anodically bonded to the silicon to form the channel top to allow visualization of the flow within the channels. The flow rates ranged from 100 to 225 g/min and the inlet subcooling levels varied from 0.5 to 6 °C. Pressure drop along the flow network and time averaged void fraction in each branching level were measured for each of the test conditions. The measured pressure drop ranged from 20 to 90 kPa, and the measured void fraction ranged from 0.3 to 0.9. The measured pressure drop results agree well with separated flow model predictions accounting for the varying flow geometry. The measured void fraction results followed the same trends as the model; however, the scatter in the experimental results is rather large.  相似文献   

18.
The transition from supercritical to subcritical open channel flow is characterised by a strong dissipative mechanism called a hydraulic jump. A hydraulic jump is turbulent and associated with the development of large-scale turbulence and air entrainment. In the present study, some new physical experiments were conducted to characterise the bubbly flow region of hydraulic jumps with relatively small Froude numbers (2.4 < Fr1 < 5.1) and relatively large Reynolds numbers (6.6 × 104 < Re < 1.3 × 105). The shape of the time-averaged free-surface profiles was well defined and the longitudinal profiles were in agreement with visual observations. The turbulent free-surface fluctuation profiles exhibited a peak of maximum intensity in the first half of the hydraulic jump roller, and the fluctuations exhibited some characteristic frequencies typically below 3 Hz. The air–water flow properties showed two characteristic regions: the shear layer region in the lower part of the flow and an upper free-surface region above. The air–water shear layer region was characterised by local maxima in terms of void fraction and bubble count rate. Other air–water flow characteristics were documented including the distributions of interfacial velocity and turbulence intensity. The probability distribution functions (PDF) of bubble chord time showed that the bubble chord times exhibited a broad spectrum, with a majority of bubble chord times between 0.5 and 2 ms. An analysis of the longitudinal air–water structure highlighted a significant proportion of bubbles travelling within a cluster structure.  相似文献   

19.
A series of tensile tests of Sn–3Ag–0.5Cu and Sn–0.7Cu lead-free solders were investigated at various strain rates from 1 × 10−4 s−1 to 1 × 10−2 s−1 and over a wide temperature range from 25 oC to 150 oC. Two-step strain rate jump tests, three-step short term creep tests with stress jump, and uniaxial ratcheting tests were also conducted. Based on the test data, a new constitutive model was proposed with a simple formulation and only eight material constants which can be easily obtained. The model employs two carefully defined back stress components to simulate the loading/unloading asymmetry phenomenon in uniaxial ratcheting tests. Different evolution rules of short-range back stress were given for loading and unloading stage, which provides the model ability to simulate the asymmetry in hysteresis loops. The proposed model presents good simulation of uniaxial tensile tests, strain rate jump tests, short term creep tests with stress jump, and uniaxial ratcheting tests.  相似文献   

20.
This work presents the characterization of a thermal interface material consisting of an array of mercury microdroplets deposited on a silicon die. Three arrays were tested, a 40 × 40 array (1600 grid) and two 20 × 20 arrays (400 grid). All arrays were assembled on a 4 × 4 mm2 silicon die. An experimental facility which measures the thermal resistance across the mercury array under steady state conditions is described. The thermal interface resistance of the arrays was characterized as a function of the applied load. A thermal interface resistance as low as 0.253 mm2 K W−1 was measured. A model to predict the thermal resistance of a liquid-metal microdroplet array was developed and compared to the experimental results. The contact resistance of the mercury arrays was estimated based on the experimental and model data. An average contact resistance was estimated to be 0.14 mm2 K W−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号