首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Modeling ductile fracture processes using Gurson-type cell elements has achieved considerable success in recent years. However, incorporating the full mechanisms of void growth and coalescence in cohesive zone laws for ductile fracture still remains an open challenge. In this work, a planar field projection method, combined with equilibrium field regularization, is used to extract crack-tip cohesive zone laws of void growth in an elastic-plastic solid. To this end, a single row of void-containing cell elements is deployed directly ahead of a crack in an elastic-plastic medium subjected to a remote K-field loading; the macroscopic behavior of each cell element is governed by the Gurson porous material relation, extended to incorporate vapor pressure effects. A thin elastic strip surrounding this fracture process zone is introduced, from which the cohesive zone variables can be extracted via the planar field projection method. We show that the material's initial porosity induces a highly convex traction-separation relationship — the cohesive traction reaches the peak almost instantaneously and decreases gradually with void growth, before succumbing to rapid softening during coalescence. The profile of this numerically extracted cohesive zone law is consistent with experimentally determined cohesive zone law in Part I for multiple micro-crazing in HIPS. In the presence of vapor pressure, both the cohesive traction and energy are dramatically lowered; the shape of the cohesive zone law, however, remains highly convex, which suggests that diffusive damage is still the governing failure mechanism.  相似文献   

2.
3.
A crack growth criterion is derived based on the Griffith energy concept and the cohesive zone model for modelling fracture in elastic–plastic ductile materials. The criterion is implemented in the finite element context by a virtual crack extension technique. An automatic modelling of the ductile fracture process is realised by combining a local remeshing procedure and the criterion. The validity of the derived criterion is examined by modelling a compact tension specimen.  相似文献   

4.
The coupled thermomechanical numerical analysis of composite laminates with bridged delamination cracks loaded by a temperature gradient is described. The numerical approach presented is based on the framework of a cohesive zone model. A traction-separation law is presented which accounts for breakdown of the micromechanisms responsible for load transfer across bridged delamination cracks. The load transfer behavior is coupled to heat conduction across the bridged delamination crack. The coupled crack-bridging model is implemented into a finite element framework as a thermomechanical cohesive zone model (CZM). The fundamental response of the thermomechanical CZM is described. Subsequently, bridged delamination cracks of fixed lengths are studied. Values of the crack tip energy release rate and of the crack heat flux are computed to characterize the loading of the structure. Specimen geometries are considered that lead to crack opening through bending deformation and buckling delamination. The influence of critical mechanical and thermal parameters of the bridging zone on the thermomechanical delamination behavior is discussed. Bridging fibers not only contribute to crack conductance, but by keeping the crack opening small they allow heat flux across the delamination crack to be sustained longer, and thereby contribute to reduced levels of thermal stresses. The micro-mechanism based cohesive zone model allows the assessment of the effectiveness of the individual mechanisms contributing to the thermomechanical crack bridging embedded into the structural analysis.  相似文献   

5.
张恒  张雄  乔丕忠 《力学进展》2022,52(4):852-873
近场动力学采用非局部积分计算节点内力, 利用统一数学框架描述空间连续与非连续, 避免了非连续区局部空间导数引起的应力奇异, 数值上具有无网格属性, 可自然模拟材料结构的断裂问题. 本文概述了近场动力学的弹性本构力模型, 系统介绍了近场动力学临界伸长率、临界能量密度以及材料强度相关的键失效准则. 详细介绍了近场动力学在断裂力学领域的研究进展, 包括断裂参数能量释放率与应力强度因子的求解、J积分、混合型裂纹、弹塑性断裂、黏聚力模型、动态断裂、材料界面断裂以及疲劳裂纹扩展等. 最后讨论了断裂问题近场动力学研究的发展方向.   相似文献   

6.
A thermally dissipative cohesive zone model is developed for predicting the temperature increase at the tip of a crack propagating dynamically in a nominally brittle material exhibiting a cohesive-type failure such as crazing. The model assumes that fracture energy supplied to the crack tip region that is in excess of that needed for the creation of new free surfaces during crack advance is converted to heat within the cohesive zone. Bulk dissipation mechanisms, such as plasticity, are not accounted for. Several cohesive traction laws are examined, and the model is then used to make predictions of crack tip heating at various crack propagation speeds in the nominally brittle amorphous polymer PMMA, observed to fail by a crazing-type mechanism. The heating predictions are compared to experimental data where the temperature field surrounding a high speed crack in PMMA was measured. Measurements are made in real time using a multi-point high speed HgCdTe infrared radiation detector array. At the same time as temperature, simultaneous measurement of fracture energy is made by a strain gauge technique, and crack tip speed is monitored through a resistance ladder method. Material strength can be estimated through uniaxial tension tests, thus minimizing the need for parameter fitting in the stress-opening traction law. Excellent agreement between experiments and theory is found for two of the cohesive traction law temperature predictions, but only for the case where a single craze is active during the dynamic fracture of PMMA, i.e. crack tip speed up to approximately 0.2cR. For higher speed fracture where subsurface damage becomes prominent, the line dissipation model of a cohesive zone is inadequate, and a distributed damage model is needed.  相似文献   

7.
A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics (MD) simulations. An MD model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat Σ99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element—an atomistic analog to a continuum cohesive zone model element—the results from the MD simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion.  相似文献   

8.
The propagation of interlayer cracks and the resulting failure of the interface is a typical mode occurring in rock engineering and masonry structure. On the basis of the theory of elasto~plasticity and fracture mechanics, the shear beam model for the solution of interface failure was presented. The concept of `cohesive crack’ was adopted to describe the constitutive behavior of the cohesive interfacial layer. Related fundamental equations such as equilibrium equation, constitutive equations were presented. The behavior of a double shear beam bonded through cohesive layer was analytically calculated. The stable propagation of interface crack and process zone was investigated.  相似文献   

9.
Fracture occurs on multiple interacting length scales; atoms separate on the atomic scale while plasticity develops on the microscale. A dynamic multiscale approach (CADD: coupled atomistics and discrete dislocations) is employed to investigate an edge-cracked specimen of single-crystal nickel, Ni, (brittle failure) and aluminum, Al, (ductile failure) subjected to mode-I loading. The dynamic model couples continuum finite elements to a fully atomistic region, with key advantages such as the ability to accommodate discrete dislocations in the continuum region and an algorithm for automatically detecting dislocations as they move from the atomistic region to the continuum region and then correctly “converting” the atomistic dislocations into discrete dislocations, or vice-versa. An ad hoc computational technique is also applied to dissipate localized waves formed during crack advance in the atomistic zone, whereby an embedded damping zone at the atomistic/continuum interface effectively eliminates the spurious reflection of high-frequency phonons, while allowing low-frequency phonons to pass into the continuum region.The simulations accurately capture the essential physics of the crack propagation in a Ni specimen at different temperatures, including the formation of nano-voids and the sudden acceleration of the crack tip to a velocity close to the material Rayleigh wave speed. The nanoscale brittle fracture happens through the crack growth in the form of nano-void nucleation, growth and coalescence ahead of the crack tip, and as such resembles fracture at the microscale. When the crack tip behaves in a ductile manner, the crack does not advance rapidly after the pre-opening process but is blunted by dislocation generation from its tip. The effect of temperature on crack speed is found to be perceptible in both ductile and brittle specimens.  相似文献   

10.
Cohesive zone failure models are widely used to simulate fatigue crack propagation under cyclic loading, but the model parameters are phenomenological and are not closely tied to the underlying micromechanics of the problem. In this paper, we will inversely extract the cohesive zone laws for fatigue crack growth in an elasto-plastic ductile solid using a field projection method (FPM), which projects the equivalent tractions and separations at the cohesive crack-tip from field information outside the process zone. In our small-scale yielding model, a single row of discrete voids is deployed directly ahead of a crack in an elasto-plastic medium subjected to cyclic mode I K-field loading. Damage accumulation under cyclic loading is captured by the growth of voids within the micro-voiding zone ahead of the crack, while the evolution of the cohesive zone law representing the micro-voiding zone is inversely extracted via the FPM. We show that the field-projected cohesive zone law captures the essential micromechanisms of fatigue crack growth in the ductile medium: from loading and unloading hysteresis caused by void growth and plastic hardening, to the softening damage locus associated with crack propagation via a void by void growth mechanism. The results demonstrate the effectiveness of the FPM in obtaining a micromechanics-based cohesive zone law in-place of phenomenological models, which opens the way for a unified treatment of fatigue crack problems.  相似文献   

11.
Crack initiation and crack growth resistance in elastic plastic materials, dominated by crack-tip plasticity are analyzed with the crack modeled as a cohesive zone. Two different types (exponential and bilinear) of cohesive zone models (CZMs) have been used to represent the mechanical behavior of the cohesive zones. In this work, it is suggested that different forms of CZMs (e.g., exponential, bilinear) are the manifestations of different micromechanisms-based inelastic processes that participate in dissipating energy during the fracture process and each form is specific to each material system. It is postulated that the total energy release rate comprises the plastic dissipation rate in the bounding material and the separation energy rate within the fracture process zone, the latter is determined by CZMs. The total energy release rate then becomes a function of the material properties (e.g., yield strength, strain hardening exponent) and cohesive properties of the fracture process zone (e.g., cohesive strength and cohesive energy), and the form of cohesive zone model (CZM) that determines the rate of energy dissipation in the forward and wake regions of the crack. The effects of material parameters, cohesive zone parameters as well as the form/shape of CZMs in predicting the crack growth resistance and the size of plastic zone (SPZ) surrounding the crack tip are systematically examined. It is found that in addition to the cohesive strength and cohesive energy, the form (shape) of the traction–separation law of CZM plays a very critical role in determining the crack growth resistance (R-curve) of a given material. It is further observed that the shape of the CZM corresponds to inelastic processes active in the forward and wake regions of the crack, and has a profound influence on the R-curve and SPZ.  相似文献   

12.
Solution of Cauchy-type singular integral equations permits the evaluation of the fracture parameters at the crack tips very accurately. However, it does not permit the determination of the crack opening and sliding displacements while ensuring no crack surface interpenetration unless the location of the contact zone is known a priori. In order to circumvent this shortcoming, this study presents a solution method based on the Hadamard-type singular integral equations to obtain the crack opening and sliding displacements directly while enforcing the appropriate conditions to prevent interpenetration. Furthermore, the crack opening displacements are physically more meaningful and readily validated against the finite element analysis predictions. The numerical solutions of the hypersingular integral equations provide not only crack opening and sliding displacements directly but also the stress intensity factors and energy release rates. Also, the behavior of the energy release rate is examined as the cohesive crack located parallel to the interface approaches the interface from either the soft or the stiff side of the interface. The limiting value of the energy release rate is established by considering an interface crack. As the cohesive crack approaches the interface from either side of the interface, the energy release rate approaches to that of the interface crack. However, the length of contact zone between the cohesive crack surfaces under uniform shear loading does not approach to that of the interface crack.  相似文献   

13.
A computational analysis of a coated high temperature composite material under cyclic heat flux loading is conducted. The material system considered is a carbon–carbon (CC) composite laminate with a SiC environmental protection coating. Interface crack growth between the CC laminate and the SiC coating as well as the concurrent changes in the effective conductivity of the material system are modeled by the use of an irreversible thermo-mechanical cohesive zone model. In this model, the degradation of the cohesive strength due to cyclic loading is accounted for through a damage variable for which an evolution equation is given in terms of cohesive zone tractions and displacement jumps. Furthermore, interface failure progressively degrades the heat transfer across the interface. In the model the crack tip singularities for both stress analysis and heat transfer are removed. While the crack growth rates predicted by the simulation results can in principle be described by a Paris law approach, the strength of the proposed model is that the use of global loading parameters is in fact not necessary. Instead, material failure is described through local changes to the coupled mechanical and thermal fields.  相似文献   

14.
混凝土黏聚开裂模型若干进展   总被引:3,自引:0,他引:3  
黏聚模型是用来描述混凝土断裂行为的基本模型, 首先介绍了混凝土的黏聚开裂模型的基本概念,总结了确定黏聚区的本构方程的各种方法,即直接单轴拉伸测试、J积分方法、R曲线法、柔度法和逆推法.然后介绍了黏聚模型在I型和复合型裂纹问题、疲劳断裂问题中的应用以及黏聚模型与混凝土尺寸效应的关系.最后对黏聚开裂模型与桥联模型、带状裂缝模型进行了比较和总结, 指出了该模型存在的问题, 并对其以后的发展方向提出了建议.   相似文献   

15.
An approach for the coupled thermomechanical analysis of composite structures with bridged cracks is described. A crack bridging law is presented that accounts for breakdown of load as well as of heat transfer across the crack with increasing crack opening. The crack bridging law is implemented into a finite element framework as a cohesive zone model and is used for the investigation of unidirectional laminates under prescribed temperature gradients. The effects of crack bridging parameters on energy release rates, mode mixity and crack heat flux is discussed for boundary conditions which lead to crack opening either through bending deformation or delamination buckling.  相似文献   

16.
17.
数学网格和物理网格分离的有限单元法(I):基本理论   总被引:5,自引:4,他引:1  
常规有限单元法在复杂边界问题的网格剖分、可移动边界和非连续变形问题的数值模拟等方面存在困难.本文将常规的有限单元分离为几何上相互独立的数学单元和物理单元,基于数学单元构造近似函数,引入位移模式关联法则以确定物理单元的位移模式,提出了在现有有限单元法框架内、基于数学网格和物理网格分离的强化有限单元法(FEM++).与常规有限单元法(SFEM)比较表明,强化有限单元法不仅很好地克服了常规有限单元法网格剖分上的困难,而且提供了一条更简便、更自然的分析移动边界问题和非连续变形问题的新途径.最后,通过数值算例验证了强化有限单元法的适用性和有效性.  相似文献   

18.
A new viscoelastic cohesive zone model is formulated for large deformation conditions and within a fully coupled thermomechanical framework. The model is suitable for the simulation of a wide range of problems especially for polymeric materials. It can capture viscoelastic crack propagation as well as energy dissipation due to this process. Starting from the principles of thermodynamics, a 3D finite element formulation is derived for a fully coupled simultaneous solution of the thermal field and the deformation field. The viscoelastic model is constructed by extending an elastic exponential traction separation law using a simple rheology. The viscous part of the tractions is postulated to have the same characteristic length as the elastic part and that they are related by a single material parameter. A Newtonian dashpot is used to describe the evolution of the viscous separation. Furthermore, thermal effects are accounted for using temperature expressions in both the traction laws and the viscosity of the dashpot, and using a heat conduction law across the interface. The model is implemented within an implicit finite element code and the internal variable is calculated using an internal iteration. Different numerical examples are used to verify the model and a comparison with experimental data shows a satisfactory agreement.  相似文献   

19.
Existing cohesive zone models assume that actual fracture zone of non-zero mass can be modeled by a line segment (cohesive zone) with no mass and inertia. In the present work, a simplified mass-spring model is presented to study inertia effect of cohesive zone on a mode-I steady-state moving crack. It is showed that fracture energy predicted by the present model increases dramatically when a finite limiting crack speed is approached. Reasonable agreement with known experiments indicates that the present model has the potential to catch the inertia effect of cohesive zone which has been ignored in existing cohesive zone models and better simulate dynamic fracture at high crack speed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号