首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The coupled thermomechanical numerical analysis of composite laminates with bridged delamination cracks loaded by a temperature gradient is described. The numerical approach presented is based on the framework of a cohesive zone model. A traction-separation law is presented which accounts for breakdown of the micromechanisms responsible for load transfer across bridged delamination cracks. The load transfer behavior is coupled to heat conduction across the bridged delamination crack. The coupled crack-bridging model is implemented into a finite element framework as a thermomechanical cohesive zone model (CZM). The fundamental response of the thermomechanical CZM is described. Subsequently, bridged delamination cracks of fixed lengths are studied. Values of the crack tip energy release rate and of the crack heat flux are computed to characterize the loading of the structure. Specimen geometries are considered that lead to crack opening through bending deformation and buckling delamination. The influence of critical mechanical and thermal parameters of the bridging zone on the thermomechanical delamination behavior is discussed. Bridging fibers not only contribute to crack conductance, but by keeping the crack opening small they allow heat flux across the delamination crack to be sustained longer, and thereby contribute to reduced levels of thermal stresses. The micro-mechanism based cohesive zone model allows the assessment of the effectiveness of the individual mechanisms contributing to the thermomechanical crack bridging embedded into the structural analysis.  相似文献   

2.
Hard wear resistant coatings that are subjected to contact loading sometimes fail because the coating delaminates from the substrate. In this report, systematic finite element computations are used to model coating delamination under contact loading. The coating and substrate are idealized as elastic and elastic–plastic solids, respectively. The interface between coating and substrate is represented using a cohesive zone law, which can be characterized by its strength and fracture toughness. The system is loaded by an axisymmetric, frictionless spherical indenter. We observe two failure modes: shear cracks may nucleate just outside the contact area if the indentation depth or load exceeds a critical value; in addition, tensile cracks may nucleate at the center of the contact when the indenter is subsequently removed from the surface. Delamination mechanism maps are constructed which show the critical indentation depth and force required to initiate both shear and tensile cracks, as functions of relevant material properties. The fictitious viscosity technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces allows us to explore a wider parametric space that a conventional cohesive model cannot handle. Numerical results have also been compared to analytical analyses of asymptotic limits using plate bending and membrane stretching theories, thus providing guidelines for interpreting the simulation results.  相似文献   

3.
In this paper, the three-dimensional adaptive finite element modeling is presented for cohesive fracture analysis of non-planer crack growth. The technique is performed based on the Zienkiewicz–Zhu error estimator by employing the modified superconvergent patch recovery procedure for the stress recovery. The Espinosa–Zavattieri bilinear constitutive equation is used to describe the cohesive tractions and displacement jumps. The 3D cohesive fracture element is employed to simulate the crack growth in a non-planar curved pattern. The crack growth criterion is proposed in terms of the principal stress and its direction. Finally, several numerical examples are analyzed to demonstrate the validity and capability of proposed computational algorithm. The predicted crack growth simulation and corresponding load-displacement curves are compared with the experimental and other numerical results reported in literature.  相似文献   

4.
Cohesive zone failure models are widely used to simulate fatigue crack propagation under cyclic loading, but the model parameters are phenomenological and are not closely tied to the underlying micromechanics of the problem. In this paper, we will inversely extract the cohesive zone laws for fatigue crack growth in an elasto-plastic ductile solid using a field projection method (FPM), which projects the equivalent tractions and separations at the cohesive crack-tip from field information outside the process zone. In our small-scale yielding model, a single row of discrete voids is deployed directly ahead of a crack in an elasto-plastic medium subjected to cyclic mode I K-field loading. Damage accumulation under cyclic loading is captured by the growth of voids within the micro-voiding zone ahead of the crack, while the evolution of the cohesive zone law representing the micro-voiding zone is inversely extracted via the FPM. We show that the field-projected cohesive zone law captures the essential micromechanisms of fatigue crack growth in the ductile medium: from loading and unloading hysteresis caused by void growth and plastic hardening, to the softening damage locus associated with crack propagation via a void by void growth mechanism. The results demonstrate the effectiveness of the FPM in obtaining a micromechanics-based cohesive zone law in-place of phenomenological models, which opens the way for a unified treatment of fatigue crack problems.  相似文献   

5.
基于有限元计算网格,扩展有限单元法通过建立特殊的广义节点插值形式来描述含裂缝体的不连续位移场,避免了有限元法模拟裂缝时需要的网格重划分。进而,本文从虚功原理出发,在有限元法框架内完整地推导了能模拟宏观裂纹力学场的扩展有限元法实现公式,在理论上更全面地考虑了内部裂纹面上分布外载荷及缝内粘连材料刚度的影响,并提出了构建统一的扩展有限单元刚度阵形成模式,保证了与传统有限单元方式的协调一致。文中对方法的实现过程也做了详细阐述,给出了通用的计算公式,确保了算法的可行性。  相似文献   

6.
Modeling ductile fracture processes using Gurson-type cell elements has achieved considerable success in recent years. However, incorporating the full mechanisms of void growth and coalescence in cohesive zone laws for ductile fracture still remains an open challenge. In this work, a planar field projection method, combined with equilibrium field regularization, is used to extract crack-tip cohesive zone laws of void growth in an elastic-plastic solid. To this end, a single row of void-containing cell elements is deployed directly ahead of a crack in an elastic-plastic medium subjected to a remote K-field loading; the macroscopic behavior of each cell element is governed by the Gurson porous material relation, extended to incorporate vapor pressure effects. A thin elastic strip surrounding this fracture process zone is introduced, from which the cohesive zone variables can be extracted via the planar field projection method. We show that the material's initial porosity induces a highly convex traction-separation relationship — the cohesive traction reaches the peak almost instantaneously and decreases gradually with void growth, before succumbing to rapid softening during coalescence. The profile of this numerically extracted cohesive zone law is consistent with experimentally determined cohesive zone law in Part I for multiple micro-crazing in HIPS. In the presence of vapor pressure, both the cohesive traction and energy are dramatically lowered; the shape of the cohesive zone law, however, remains highly convex, which suggests that diffusive damage is still the governing failure mechanism.  相似文献   

7.
The quasistatic growth of straight interface cracks in thermally loaded brittle multiphase solids consisting of two circular segments of brittle materials with different thermoelastic properties which are glued together at the interface with a special glass seal has been investigated. The resulting mixed boundary-value problems of the stationary plane thermoelasticity have been solved by applying the finite element method. Moreover, fracture mechanical data like crack surface displacements and strain energy release rates governing the propagation behavior of a quasistatic extending thermal interface crack have been calculated. The data obtained have been compared with the results of special cooling experiments in multiphase composite structures in which curved thermal cracks in one of the circular segments occur.  相似文献   

8.
This paper presents a numerical approach for modeling the interaction between multiple cracks in a rectangular plate under cyclic loads. It involves the formulation of fatigue growth of multiple crack tips under ruixed-mode loading and an extension of a hybrid displacement discontinuity method (a boundary element method) to fatigue crack growth analyses. Because of an intrinsic feature of the boundary element method, a general growth problem of multiple cracks can be solved in a single-region formulation. In the numerical simulation, remeshing of existing boundaries is not necessary for each increment of crack extension. Crack extension is conveniently modeled by adding new boundary elements on the incremental crack extension to the previous crack boundaries. As an example, the numerical approach is used to analyze the fatigue growth of three parallel cracks in a rectangular plate. The numerical results illustrate the validation of the numerical approach and can reveal the effect of the geometry of the cracked plate on the fatigue growth.  相似文献   

9.
A novel and improved atomistic simulation based cohesive zone law characterizing interfacial debonding is developed which explicitly accounts for the non-planarity of the crack propagation. Group of atoms in the simulation constituting cohesive zones which are used to obtain local stress and crack opening displacement data are determined dynamically during the non-planar crack growth as they cannot be determined apriori. The methodology is used to study the debonding of Σ5 (2 1 0)/[0 0 1] symmetric tilt grain boundary interface in a Cu bicrystal under several mixed mode loading conditions. Simulations show that such bicrystalline specimen exhibits three types of energy dissipative mechanisms – shear coupled GB migration (SCM) away from the crack-tips, change in spacial orientation of GB structural units rendering highly disordered grain boundary near the crack tips and brittle intergranular fracture. Which combination of these three deformation mechanism will be active influencing the degree of non-planarity of the crack propagation at various stages of loading depends on the loading mode-mixity. As the ratio of shear component of the loading parallel to the GB plane and normal to the tilt axis with respect to the normal loading increases (thereby increasing the mode-mixity), overall strain-to-failure also increases and SCM tends to become the dominant deformation mechanism. Through this framework, analytical functional forms and parameters describing cohesive laws for both normal and shear traction as a function of the mode-mixity of the loading and crack opening displacement are predicted.  相似文献   

10.
11.
为了能准确和高效的跟踪动态裂纹扩展,我们发展了三维有限变形的内聚元和一系列不可逆内聚力关系.该内聚元通过采用不可逆内聚力关系来控制裂纹两侧物质的逐渐分离和形成自由表面,这一点可类比于传统有限元对块体材料的离散化.为了展示该方法的预测能力及便于灵活使用的特点,我们模拟了Zehnder和Rosakis$^{[1]}$所做的重物落下动态断裂实验,值得注意的是该方法可以近似模拟出裂尖的轨迹.   相似文献   

12.
13.
A four-point combined DE/FE algorithm is proposed to constrain the rotation of a discrete element about its linked point and analyze the cracks propagation of laminated glass. In this approach, four linked points on a discrete element are combined with four nodes of the corresponding surface of a finite element. The penalty method is implemented to calculate the interface force between the two subdomains, the finite element (FE) and the discrete element (DE) subdomains. The sequential procedure of brittle fracture is described by an extrinsic cohesive fracture model only in the DE subdomain. An averaged stress tensor for granular media, which is automatically symmetrical and invariant by translations, is used to an accurate calculation of the averaged stress of the DE. Two simple cases in the elastic range are given to certify the effectiveness of the combined algorithm and the averaged stress tensor by comparing with the finite element method and the mesh-size dependency of the combined algorithm and the cohesive model is also investigated. Finally, the impact fracture behavior of a laminated glass beam is simulated, and the cracks propagation is compared with experimental results showing that the theory in this work can be used to predict some fracture characteristics of laminated glass.  相似文献   

14.
15.
Adhesive contact between a rigid sphere and an elastic film on an elastic–perfectly plastic substrate was examined in the context of finite element simulation results. Surface adhesion was modeled by nonlinear springs obeying a force-displacement relationship governed by the Lennard–Jones potential. A bilinear cohesive zone law with prescribed cohesive strength and work of adhesion was used to simulate crack initiation and growth at the film/substrate interface. It is shown that the unloading response consists of five sequential stages: elastic recovery, interface damage (crack) initiation, damage evolution (delamination), film elastic bending, and abrupt surface separation (jump-out), with plastic deformation in the substrate occurring only during damage initiation. Substrate plasticity produces partial closure of the cohesive zone upon full unloading (jump-out), residual tensile stresses at the front of the crack tip, and irreversible downward bending of the elastic film. Finite element simulations illustrate the effects of minimum surface separation (i.e., maximum compressive surface force), work of adhesion and cohesive strength of the film/substrate interface, substrate yield strength, and initial crack size on the evolution of the surface force, residual deflection of the elastic film, film-substrate separation (debonding), crack-tip opening displacement, and contact instabilities (jump-in and jump-out) during a full load–unload cycle. The results of this study provide insight into the interdependence of contact instabilities and interfacial damage (cracking) encountered in layered media during adhesive contact loading and unloading.  相似文献   

16.
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric material plane subjected to anti-plane shear stress loading were studied by the Schmidt method. The problem was formulated through Fourier transform into dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the relation between the electric field and the stress field near the crack tips was obtained. The results show that the stress and the electric displacement intensity factors at the crack tips depend on the lengths and spacing of the cracks. It is also revealed that the crack shielding effect presents in piezoelectric materials.  相似文献   

17.
Viscoplastic crack-tip deformation behaviour in a nickel-based superalloy at elevated temperature has been studied for both stationary and growing cracks in a compact tension (CT) specimen using the finite element method. The material behaviour was described by a unified viscoplastic constitutive model with non-linear kinematic and isotropic hardening rules, and implemented in the finite element software ABAQUS via a user-defined material subroutine (UMAT). Finite element analyses for stationary cracks showed distinctive strain ratchetting behaviour near the crack tip at selected load ratios, leading to progressive accumulation of tensile strain normal to the crack-growth plane. Results also showed that low frequencies and superimposed hold periods at peak loads significantly enhanced strain accumulation at crack tip. Finite element simulation of crack growth was carried out under a constant ΔK-controlled loading condition, again ratchetting was observed ahead of the crack tip, similar to that for stationary cracks.A crack-growth criterion based on strain accumulation is proposed where a crack is assumed to grow when the accumulated strain ahead of the crack tip reaches a critical value over a characteristic distance. The criterion has been utilized in the prediction of crack-growth rates in a CT specimen at selected loading ranges, frequencies and dwell periods, and the predictions were compared with the experimental results.  相似文献   

18.
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt method.The problem is formulated through Fourier transform into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials.Finally, the relation between the electric field, the magnetic flux field and the stress field near the crack tips is obtained.The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the length and spacing of the cracks.It is also revealed that the crack shielding effect presents in piezoelectric/piezomagnetic materials.  相似文献   

19.
断裂过程的有限元模拟   总被引:40,自引:0,他引:40  
讨论了材料断裂过程的有限元模拟技术。基于自适应有限元的一般原理,并针对多相材料的裂纹扩展的特点,提出了一种简化的高精度和高效率有限元网格的动态重新划分策略。裂纹被假设沿着单元之间的路径连续扩展,利用节点力释放技术生成新的裂纹自由表面,发展了一种可随裂尖连续移动的网格动态加密和释放方法。这种方法已在各种裂纹问题中得以实现与应用。  相似文献   

20.
A new viscoelastic cohesive zone model is formulated for large deformation conditions and within a fully coupled thermomechanical framework. The model is suitable for the simulation of a wide range of problems especially for polymeric materials. It can capture viscoelastic crack propagation as well as energy dissipation due to this process. Starting from the principles of thermodynamics, a 3D finite element formulation is derived for a fully coupled simultaneous solution of the thermal field and the deformation field. The viscoelastic model is constructed by extending an elastic exponential traction separation law using a simple rheology. The viscous part of the tractions is postulated to have the same characteristic length as the elastic part and that they are related by a single material parameter. A Newtonian dashpot is used to describe the evolution of the viscous separation. Furthermore, thermal effects are accounted for using temperature expressions in both the traction laws and the viscosity of the dashpot, and using a heat conduction law across the interface. The model is implemented within an implicit finite element code and the internal variable is calculated using an internal iteration. Different numerical examples are used to verify the model and a comparison with experimental data shows a satisfactory agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号