首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为了通过事故现场遗留的车辆油漆快速排查及确定肇事逃逸车辆的车型范围,采集了287份汽车车身油漆样本,获得了940份油漆红外光谱,建立了汽车车身油漆红外光谱比对数据库。结合特征波峰法与相关系数法实现了车身油漆光谱的比对,并对不同类型油漆碎片进行了比对实验。实验结果表明:对于层次完整的油漆碎片,比对的重点是面漆层和中涂层光谱;对于不完整的油漆碎片,应层次分离后分层进行光谱检索;对于老化油漆,应以面漆层的光谱匹配为主,扩大搜索范围后综合分析搜寻嫌疑车型。  相似文献   

2.
《Comptes Rendus Physique》2018,19(7):543-552
Lead white, composed of a mixture of cerussite and hydrocerussite (respectively PbCO3 and Pb3(CO3)2(OH)2), is often associated in paintings with other white pigments, especially calcite. By combining in-situ analyses with paint reconstructions, we attempt to get a better understanding of the role of this addition of calcite and to investigate how artists may have used it to modify the properties of their paints. Lead-based white pigments of a Dutch 17th-century nuancier have been analysed as well as historical paintings. Two examples are given: one from a painting by Roger van der Weyden, in the 15th century, and one by Nicolas Poussin, in the 17th century, from specific zones that indicate the addition of calcite. The presence of calcite and pigments enhances both the optical and the rheological properties. Visible reflectance spectroscopy was carried out on pure paints as well as mixtures and indicated an increase in the transparency of the paint mixture in comparison to pure lead white. Rheological measurements also indicated an increase in the elastic and viscous moduli, as well as of the yield stress again in comparison to pure lead white. Calcite could thus have been used to assist in the creation of impasto effects in lead white paints.  相似文献   

3.
The objective of this article is to provide an experimental test and evaluation on mechanical characteristics of the W/Cr interface. The elastic modulus and hardness of the sample are measured by a nanoindentation tester. The test results show that the elastic modulus and hardness of the sample are nonlinear with respect to the depth h of the interface structure, unlike the usual approximate horizontal linear relationship as expected. To understand the bonding characteristics between W and Cr in nanoscale, the nano-scratch test is conducted considering the influence of thermal cycling load on the sample. The test results show that interfacial bonding strengths are different between samples under different thermal cycling loading conditions. It implies that the thermal loading has the potential probability to reduce the bonding reliability of the W/Cr interface. It builds a basis for future work of further investigations on mechanical properties of W/Cr interface structure.  相似文献   

4.
《Composite Interfaces》2013,20(7):615-626
The Al/Cr double-layer film structure samples (thickness, 1200 nm) were prepared by the magnetron sputtering method. To investigate the mechanical properties, the samples were measured by using a nanoindentation instrument. The test results showed the nonlinearity and different modes of the main mechanical properties by comparing the macro-scale structure samples with other samples of similar materials. Based on the test, the elastic modulus and hardness of thin film structures can be calculated by considering different loads to conduct multi-point indentations. Meanwhile, the relationships between the mechanical parameters can be investigated based on these Al/Cr double-layer film structure samples. To validate the test, numerical analysis was developed using a finite element method to simulate the loading and unloading process of indentation. The simulation results were compared with the results of experiments to illustrate the validity of both the test and simulation to a certain extent. The investigation builds not only an experimental basis for practical applications for future study, but also supplies a complementary means of verification for theoretical analysis.  相似文献   

5.
We have characterized the nanoscale mechanical properties of grain boundary precipitate-free zones (PFZ's) in an AlCuSiGe alloy, using combined nanoindentation and in-situ atomic force microscopy (AFM). These mechanical properties were then correlated to the composition, precipitate distribution and, indirectly, to the vacancy concentration within these regions, as analyzed by transmission electron microscopy and spectroscopy. Using these results we constructed a structure-zone map of the area adjacent to the grain boundary, which relates the reduced elastic modulus and nanoindentation hardness of the alloy to its graded microstructure. Our analysis indicates that the lowest hardness was found in the region where no precipitates are present at all, regardless of solute concentration. In regions where precipitation is different from that of the bulk, somewhat inferior mechanical properties are achieved.  相似文献   

6.
提出了一种纳米尺度的有限元方法,碳纳米管中的碳-碳化学键被模拟为键单元.按照平衡关系,根据有限元理论,作用于每个碳原子上的作用力可以写成键单元的刚度矩阵与每个碳原子位移的乘积.在分子力学的基本假设下,键单元刚度矩阵的每个元素可以写为分子力学中力场常数的函数,这样建立起了宏观力学方法(有限元)与纳米尺度力学方法(分子力学)之间的联系.应用该方法模拟了扶椅型与锯齿型单壁碳纳米管的力学行为从而验证了该方法的有效性.分析结果说明单壁碳纳米管的弹性模量与管厚度的选取直接相关.此外,弹性模量对所选取的分子力学中的力场常数非常敏感,管的弹性模量显示出对半径的尺度依赖性,但是管长度对弹性模量的影响小到可以被忽略.  相似文献   

7.
The composition of dental tissues and their interaction determines its mechanical properties. The mechanical properties and chemical composition of the teeth of extant reptiles are still poorly studied areas. As a preliminary study the fangs of four species of snakes and a human tooth were investigated through nanoindentation and Raman spectroscopy. The average elastic modulus values for the main body of the fangs ranged from 15.3 GPa to 24.6 GPa, and 19.1 GPa for the human dentine. Raman spectroscopy and principal component analysis (PCA) showed that snake fangs are similar in composition to human dentine, both of which comprised of hydroxyapatite and an organic matrix. The elastic modulus and hardness data were correlated to the Raman spectra using partial least squares regression (PLS). The spectral features which correlated with the elastic modulus would suggest that elastic modulus is dependent on the relative protein to mineral amounts in the tooth. The form of the phosphate and the relative levels of phosphate to organic components also appear to be governing factors for elastic modulus. The PLS of Raman spectra against the hardness gave very similar results. The small differences between snake fangs and human dentine appeared to be because of carbonate content, with higher levels of carbonate in the human tooth than the snake fangs. Snake fangs should be able to withstand large lateral forces. Human dentine aids in dissipating imposed loads. This similarity in the chemical composition of the snake fangs and human dentine supported the findings of the similarities in mechanical properties, which may be attributed to the similar functional demands of these biocomposites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A new process fabricating micro parts of thin metal foils by laser shock waves with forming/blanking compound die is reported in this article, in which flexible rubber material was used as the soft punch to act on the thin metal sheet. Systematic studies were carried out experimentally on the process with different laser energies and materials. The formed parts were examined in terms of their morphology, surface roughness, forming depth and mechanical properties (including nanohardness, plasticity and elastic modulus) characterized by nanoindentation test. According to the results, the ablation states of confinement medium and the surface roughness of the different regions change with energies. Additionally, the proper energies are necessary to form complex parts and the forming process can be applied to manufacture parts with good surface quality. What׳s more, the nanoindentation test results showed that the nanohardness, plasticity and elastic modulus of material were increased after impact. The increase in nanohardness and plasticity can attribute to higher stiffness of the parts. The enhanced elastic modulus indicates an increased stiffness of the parts, providing an evidence for the reduced spring back of copper during laser shocking.  相似文献   

9.
Ti–Zr–Ni samples with a substantial predominance of icosahedral quasicrystalline phase were produced by the melt-spinning technique. Their structure and mechanical properties were studied by X-ray diffraction and nanoindentation methods. The quasicrystalline phase was found to have a primitive lattice with the quasicrystallinity parameter a q = 0.5200–0.5210?nm. Quasicrystalline deformation behaviour under nanoindentation versus phase composition and structure is discussed in comparison with single crystal W–12?wt%?Ta. The estimated elastic modulus E of the quasicrystalline phase shows no correlation with the element composition. The nanohardness was shown to increase with increasing quasicrystalline-phase perfection. Load–displacement curves of Ti–Zr–Ni quasicrystals (QCs) show stepwise character with alternation of elastic and plastic sections. Such non-uniform plastic flow in QCs might be caused by the localization of plastic deformation in shear bands. The non-uniformity of the plastic deformation increases with the increasing quasicrystalline phase perfection.  相似文献   

10.
Determining the mechanical properties at micro- and nanometer length scales using nanoindentation or atomic force microscopy is important to many areas of science and engineering. Here we establish equations for obtaining storage and loss modulus from oscillatory indentations by performing a nonlinear analysis of conical and spherical indentation in elastic and viscoelastic solids. We show that, when the conical indenter is driven by a sinusoidal force, the square of displacement is a sinusoidal function of time, not the displacement itself, which is commonly assumed. Similar conclusions hold for spherical indentations. Well-known difficulties associated with measuring contact area and correcting thermal drift may be circumvented using the newly derived equations. These results may help improve methods of using oscillatory indentation for determining elastic and viscoelastic properties of solids.  相似文献   

11.
To make metals bioactive for orthopaedic applications, apatite/TiO2 composite coatings were formed on Ti and NiTi shape memory alloy (SMA) using a H2O2-oxidation and hot water aging technique and the subsequent accelerated biomimetic process. In the current investigation, nanoindentation, scratch testing and frictional testing were employed to assess mechanical properties and the adhesion of apatite/TiO2 composite coatings formed on Ti and NiTi SMA. Nanoindentation testing conducted on cross-sections of composite coatings indicated that there was no significant difference in nanohardness and elastic modulus between apatite/TiO2 composite coatings formed on Ti and NiTi SMA samples. The enhancement of the adhesion between the apatite layer and the metal substrates arose from the TiO2 intermediate layer in the composite coating. The highest values of coating adhesion strength for Ti and NiTi SMA samples, as measured by scratch tests, were 22.58 N and 19.07 N, respectively. However, compared to corresponding Ti samples, NiTi SMA samples had better tribological properties.  相似文献   

12.
It is widely accepted that helium(He) bubbles can prevent dislocations from moving and causing hardening and embrittlement of the material. However, He can affect the mechanical properties of materials in various ways. In this work,ultrafine nanocrystal high entropy oxide(HEO) films with He implantation are prepared by using a radio frequency(RF)reactive magnetron sputtering system to investigate the effects of He bubbles located at grain boundary on the mechanical properties of the films. The mechanical properties of the HEO films are investigated systematically via nanoindentation measurements. The results indicate that the grain boundary cavities induced by He implantation can degrade the hardness,the elastic modulus, and the creep resistance of the HEO films. The mechanical properties of the HEO films are sensitive to the interaction between the He bubbles and the dominating defects.  相似文献   

13.
In this paper, we describe an X-ray photoelectron spectroscopy (XPS) study of copper resinate, a transparent green glaze that is coloured by copper salts of resin acids. This pigment was used in Europe in the fifteenth and sixteenth centuries, but it does not seem to be a usual feature of the palette anywhere after the end of the sixteenth century, because its tendency to discolour was already widely known by artists. An essential prerequisite for the restoration of works of art is the understanding of the effects of various climatic parameters on the deterioration process. For this reason, pictorial models of copper resinate in linseed oil, capable of simulating the ancient paintings on mobile supports, were prepared and aged in a climatic chamber, under different conditions such as exposure to UV radiations, humidity and different concentration of chemical pollutants (NO2 and SO2).All the samples were investigated by XPS and the data obtained were evaluated in order to estimate aging effects as well as mechanisms of degradation. On these paint layers damage induced by X-ray irradiation was also verified. PACS 79.60.-i; 61.80.Cb; 81.40.Cd  相似文献   

14.
Research into cavitation phenomena in various fields shows that the elastic modulus of a boundary has a potential impact on cavitation erosion. To obtain the direct relationship between the elastic modulus of the boundary and cavitiation erosion, single-layer samples with different chemical composition and moduli, and double-layer samples with different elastic moduli and the same surface layer material, were prepared with silicone rubber. The results of cavitation experiments on single-layer samples, show that the coating chemical composition and mechanical properties together affect the cavitation morphology of the coating, and dominant factors vary with erosion stage. Through the cavitation test of double-layer samples, it was found that there is a positive correlation between the elastic modulus of the coating and the degree of cavitation. This study helps us to understand the relationship between coating elastic modulus and cavitation more directly, and provides theoretical and technical guidance for the application of anti-cavitation for elastic coating in engineering.  相似文献   

15.
In the open literature, reports of mechanical properties are limited for semiconducting thermoelectric materials, including the temperature dependence of elastic moduli. In this study, for both cast ingots and hot-pressed billets of Ag-, Sb-, Sn- and S-doped PbTe thermoelectric materials, resonant ultrasound spectroscopy (RUS) was utilized to determine the temperature dependence of elastic moduli, including Young's modulus, shear modulus and Poisson's ratio. This study is the first to determine the temperature-dependent elastic moduli for these PbTe-based thermoelectrics, and among the few determinations of elasticity of any thermoelectric material for temperatures above 300 K. The Young's modulus and Poisson's ratio, measured from room temperature to 773 K during heating and cooling, agreed well. Also, the observed Young's modulus, E, versus temperature, T, relationship, E(T) = E 0(1–bT), is consistent with predictions for materials in the range well above the Debye temperature. A nanoindentation study of Young's modulus on the specimen faces showed that both the cast and hot-pressed specimens were approximately elastically isotropic.  相似文献   

16.
安涛  王丽丽  文懋  郑伟涛 《物理学报》2011,60(1):16801-016801
利用磁控溅射方法在不同溅射压强条件下制备了TiN/SiNx纳米多层膜.多层膜的微观结构及力学性能分别用X射线衍射仪、原子力显微镜及纳米压痕仪来表征.结果表明随着溅射压强的增大,多层膜的界面变模糊,TiN层的择优取向由(200)晶面过渡到(111)晶面.与此同时,多层膜的表面粗糙度增大,硬度和弹性模量随溅射压强的增大而减小.多层膜力学性能的差异主要是由于薄膜的周期性结构及致密度存在差异所致. 关键词x多层膜')" href="#">TiN/SiNx多层膜 界面宽度 表面形貌  相似文献   

17.
张冰焘  律鹏  陈亮  张晓阳  赵彦  刘枫飞  孙梦利  袁伟  杜鑫  王铁山 《强激光与粒子束》2018,30(12):122001-1-122001-5
为研究离子辐照导致空心玻璃微球机械性能的变化,利用Ar离子辐照与空心玻璃微球组分相同的微球玻璃薄片,结合不同温度下的等时退火处理,采用纳米压痕测试方法研究了辐照前后玻璃机械性能的变化。测试结果表明:辐照后玻璃的硬度和模量均呈下降趋势,恢复阻力明显升高;退火后的未辐照样品硬度和模量呈上升趋势,恢复阻力在误差范围内没有发生变化; 退火后的模量呈下降趋势,恢复阻力呈下降趋势;在退火温度约为300 ℃时,辐照样品退火后的恢复阻力与未辐照样品基本相同。  相似文献   

18.
As one kind of important ferroelectric ceramics, relaxor ferroelectric PMN-PT single crystals have triggered a revolution in electromechanical devices owing to their giant piezoelectric properties and ultra-high electromechanical coupling factors. The present study focused on the mechanical responses of [100]- and [110]-oriented poled PMN-PT ferroelectric single crystals under an indenter loading. The hardness and Young’s modulus with different crystallographic orientations of the crystals were measured by using the continuous stiffness measurement (CSM) with nanoindentation technique. Using a spherical indenter pressured at different indentation depths, the typical quasi-static nanoindentation tests with displacement-controlled mode were performed on the PMN-PT single crystal samples. Load–displacement curves of indentations were recorded to reveal the yielding or inelasticity behaviour in [100]- and [110]-oriented PMN-PT through a pop-in event. It was further verified by the stress–strain curves evaluated from the corresponding load–displacement curves, to show the similar characteristic on the elastic–inelastic transition. When a Berkovich indenter was employed for mechanical response testing, another pop-in event was observed at a smaller indentation depth compared to the one for elastic–inelastic transition, which may indicate a pressure-induced phase transition from rhombohedral (R) to tetragonal (T) of the PMN-PT single crystals.  相似文献   

19.
Optical coherence tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artists’ paints. VIS–NIR (400–2,400 nm) reflectance spectra of a wide variety of paints made with historic artists’ pigments have been measured. The best spectral window with which to use OCT for the imaging of subsurface structure of paintings was found to be around 2.2 μm. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artists’ pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 μm are highly desirable for OCT applications in art and potentially material science in general.  相似文献   

20.
An analytical protocol consisting of X‐ray fluorescence spectroscopy, optical microscopy and Fourier transform infrared spectroscopy was used to study the origin and the nature of the materials (pigments, binders and coating preparation) of the Fundenii Doamnei church mural paint from Bucharest. The main interest of the present study consisted in the original votive paint from narthex, painted in 1757 in a secco technique. During analysis, an unexpected pigment in the votive paint could be detected by the combined analytical techniques: ultramarine blue. Along with this pigment, the presence of gypsum binder based on egg and flax seed oil could also be evidenced. These results demonstrated a secco execution technique of the votive paint and also the presence of a restoration treatment. Moreover, during the present study, the components of the preparation layer and the constitutive pigments from both 1699 and 1757 years mural paints have been analyzed. Hence, the following pigments could be identified: vermilion, azurite, cinnabar, lead white, ochre, natural umber and gold, by using the combination of the analytical techniques. The novelty of our results consists in detecting the composition of the materials used in this church painting (fresco and a secco) during these 254 years since its first restoration. The results of these investigations pointed to the suitability of the non‐destructive and semi‐destructive analytical techniques in the complex characterization of the paints realized in different techniques, at different periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号