首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A generalized continuum representation of two-dimensional periodic cellular solids is obtained by treating these materials as micropolar continua. Linear elastic micropolar constants are obtained using an energy approach for square, equilateral triangular, mixed triangle and diamond cell topologies. The constants are obtained by equating two different continuous approximations of the strain energy function. Furthermore, the effects of shear deformation of the cell walls on the micropolar elastic constants are also discussed. A continuum micropolar finite element approach is developed for numerical simulations of the cell structures. The solutions from the continuum representation are compared with the “exact” discrete simulations of these cell structures for a model problem of elastic indentation of a rectangular domain by a point force. The utility of the micropolar continuum representation is illustrated by comparing various cell structures with respect to the stress concentration factor at the root of a circular notch.  相似文献   

2.
Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear hyperelasticity, is embedded in the generalized continuum. In this way material information of the micro-space, which are here only the geometrical specifications of the micro-continuum, can naturally enter the constitutive law. Several applications with moving least square-based approximations (MLS) demonstrate the potential of the proposed method. This particular meshfree method is chosen, as it has been proven to be highly flexible with regard to continuity and consistency required by this generalized approach.  相似文献   

3.
4.
Formulation of a stress–strain relationship is presented for a granular medium, which is modeled as a first-order strain-gradient continuum. The elastic constants used in the stress–strain relationship are derived as an explicit function of inter-particle stiffness, particle size, and packing density. It can be demonstrated that couple-stress continuum is a subclass of strain-gradient continua. The derived stress–strain relationship is simplified to obtain the expressions of elastic constants for a couple-stress continuum. The derived stress–strain relationship is compared with that of existing theories on strain- gradient models. The effects of inter-particle stiffness and particle size on material constants are discussed.  相似文献   

5.
将周期性蜂窝材料等效为具有非局部本构的微极连续介质,以解释实验中出现的尺度效应和边界层效应.在评论相关的多种不同方法(能量法、体积平均的均匀化法等)之后,提出了一种基于位移连续和单胞力平衡的推导微极等效本构参数的新方法.以正方形单胞制成的结构为例,在不同的结构与单胞尺寸比下,考虑承受集中点载荷、均布轴力和均布剪力三种载荷工况,比较了离散完全计算、经典连续介质等效和不同微极连续体等效本构的计算结果,建议了较好的微极本构参数值.数值模拟表明,集中点载荷和剪切载荷作用时,在加载点附近和边界部分,微极等效可以显著提高计算精度.最后,给出了一种映射算法,可以根据微极等效连续体分析的结果,快速计算出对应微观单胞构件的应力,以开有圆孔的方板应力集中为例,验证并考察了所提快速算法的有效性和计算精度.  相似文献   

6.
Micropolar and micromorphic solids are continuum mechanics models, which take into account, in some sense, the microstructure of the considered real material. The characteristic property of such continua is that the state functions depend, besides the classical deformation of the macroscopic material body, also upon the deformation of the microcontinuum modeling the microstructure, and its gradient with respect to the space occupied by the material body. While micropolar plasticity theories, including non-linear isotropic and non-linear kinematic hardening, have been formulated, even for non-linear geometry, few works are known yet about the formulation of (finite deformation) micromorphic plasticity. It is the aim of the three papers (Parts I, II, and III) to demonstrate how micromorphic plasticity theories may be formulated in a thermodynamically consistent way.In the present article we start by outlining the framework of the theory. Especially, we confine attention to the theory of Mindlin on continua with microstructure, which is formulated for small deformations. After precising some conceptual aspects concerning the notion of microcontinuum, we work out a finite deformation version of theory, suitable for our aims. It is examined that resulting basic field equations are the same as in the non-linear theory of Eringen, which deals with a different definition of the microcontinuum. Furthermore, geometrical interpretations of strain and curvature tensors are elaborated. This allows to find out associated rates in a natural manner. Dual stress and double stress tensors, as well as associated rates, are then defined on the basis of the stress powers. This way, it is possible to relate strain tensors (respectively, micromorphic curvature tensors) and stress tensors (respectively, double stress tensors), as well as associated rates, independently of the particular constitutive properties.  相似文献   

7.
Continuum models of periodic masonry brickwork, viewed at a micro-level as a discrete system, are identified within the frame of linearized elasticity. The accuracy of various identification schemes is investigated for standard and micropolar continua, which are directly compared with the help of some numerical benchmarks, for different loading conditions that induce periodic and non-periodic deformation states. It is shown that periodic deformation states of brickwork are exactly reproduced by both continua, provided that a suitable identification scheme is adopted. For non-periodic states micropolar continuum is shown to better reproduce the discrete solutions, due to its capability to take scale effects into account. Both continua are asymptotically equivalent as the characteristic length of the discrete system tends to zero, while providing an upper and a lower bound of the discrete solution.  相似文献   

8.
The kinematics of generalized continua is investigated and key points concerning the definition of overall tangent strain measure are put into evidence. It is shown that classical measures adopted in the literature for micromorphic continua do not obey a constraint qualification requirement, to be fulfilled for well-posedness in optimization theory, and are therefore termed redundant. Redundancy of continua with latent microstructure and of constrained Cosserat continua is also assessed. A simplest, non-redundant, kinematic model of micromorphic continua, is proposed by dropping the microcurvature field. The equilibrium conditions and the related variational linear elastostatic problem are formulated and briefly discussed. The simplest model involves a reduced number of state variables and of elastic constitutive coefficients, when compared with other models of micromorphic continua, being still capable of enriching the Cauchy continuum model in a significant way.  相似文献   

9.
IntroductionTheprinciplesofvirtualpowerandincrementalvirtualpoweraswellastheequationsofmotionandthestressboundaryconditionsofincrementalratetypeinclassicalcontinuummechanicshavebeensystematicallydiscussedbyKUANG[1].Thepurposeofthispaperistwofold :1 )Toes…  相似文献   

10.
11.
The stability problem of cylindrical shells is addressed using higher-order continuum theories in a generalized framework. The length-scale effect which becomes prominent at microscale can be included in the continuum theory using gradient-based nonlocal theories such as the strain gradient elasticity theories. In this work, expressions for critical buckling stress under uniaxial compression are derived using an energy approach. The results are compared with the classical continuum theory, which can be obtained by setting the length-scale parameters to zero. A special case is obtained by setting two length scale parameters to zero. Thus, it is shown that both the couple stress theory and classical continuum theory forms a special case of the strain gradient theory. The effect of various parameters such as the shell-radius, shell-length, and length-scale parameters on the buckling stress are investigated. The dimensions and constants corresponding to that of a carbon nanotube, where the length-scale effect becomes prominent, is considered for this investigation.  相似文献   

12.
In this contribution, the deformational and configurational mechanics of (elastic) discrete atomistic systems in relation to their continuum counterparts are considered for the quasi-static case. Thereby, we firstly investigate the basic unconstrained case in the sense of lattice statics as a reference. Based on these results, we consider two Cauchy-Born-type constraints that (locally) describe the change of the position of atoms (between the material and the spatial configuration) in terms of either a linear or a quadratic map, respectively. Insertion of these kinematic constraints into the variation of the total potential energy of the unconstrained case renders eventually Cauchy-Born-type definitions for atomistic stresses and hyperstresses, for both deformational and configurational cases. In the continuum limit, these are the relevant continuum stresses and hyperstresses contributing to the local force balances of first- (classical) and second-order (non-classical) gradient continua (here first- and second-order gradient refers to the highest gradient of the deformation map characterizing the kinematics). It is emphasized that the atomistic and the Cauchy-Born-type configurational quantities represent novel and unexpected contributions. Among other things, they may be useful in assessing the singular or non-singular character of deformation fields at crack tips and comparing numerical estimates resulting from atomistic simulations with analytical predictions resulting from solutions of related boundary value problems for gradient continua.  相似文献   

13.
多孔连续体理论框架下的非饱和多孔介质广义有效压力定义和Bishop参数的定量表达式长期以来存在争议,这也影响了对与其直接相关联的非饱和多孔介质广义Biot有效应力的正确预测.基于随时间演变的离散固体颗粒-双联液桥-液膜体系描述的Voronoi胞元模型,利用由模型获得的非饱和颗粒材料表征元中水力-力学介观结构和响应信息,文章定义了低饱和度多孔介质局部材料点的有效内状态变量:非饱和多孔连续体的广义Biot有效应力和有效压力,导出了其表达式.所导出的有效压力公式表明,非饱和多孔连续体的有效压力张量为各向异性,它不仅对非饱和多孔连续体广义Biot有效应力张量的静水应力分量的影响呈各向异性,同时也对其剪切应力分量有影响.文章表明,非饱和多孔连续体中提出的广义Biot理论和双变量理论的基本缺陷在于它们均假定反映非混和两相孔隙流体对固相骨架水力-力学效应的有效压力张量为各向同性.此外,为定义各向同性有效压力张量和作为加权系数而引入的Bishop参数并不包含对非饱和多孔连续体中局部材料点水力-力学响应具有十分重要效应的基质吸力.所导出的非饱和多孔介质广义Biot有效应力和有效压力公式(包括反映有效压力...  相似文献   

14.
15.
As is well known, classical continuum theories cease to adequately model a material’s behavior as long-range loads or interactions begin to have a greater effect on the overall behavior of the material, i.e., as the material no longer conforms to the locality requirements of classical continuum theories. It is suggested that certain structures to be analyzed in this work, e.g., columnar thin films, are influenced by non-local phenomena. Directed continuum theories, which are often used to capture non-local behavior in the context of a continuum theory, will therefore be used. The analysis in this work begins by establishing the kinematics relationships for a discrete model based on the physical structure of a columnar thin film. The strain energy density of the system is calculated and used to formulate a directed continuum theory, in particular a micromorphic theory, involving deformations of the film substrate and deformations of the columnar structure. The resulting boundary value problem is solved analytically to obtain the deformation of the film in response to applied end displacements.  相似文献   

16.
The primary objective of this paper is to formulate the governing equations of shear deformable beams and plates that account for moderate rotations and microstructural material length scales. This is done using two different approaches: (1) a modified von Kármán non-linear theory with modified couple stress model and (2) a gradient elasticity theory of fully constrained finitely deforming hyperelastic cosserat continuum where the directors are constrained to rotate with the body rotation. Such theories would be useful in determining the response of elastic continua, for example, consisting of embedded stiff short fibers or inclusions and that accounts for certain longer range interactions. Unlike a conventional approach based on postulating additional balance laws or ad hoc addition of terms to the strain energy functional, the approaches presented here extend existing ideas to thermodynamically consistent models. Two major ideas introduced are: (1) inclusion of the same order terms in the strain–displacement relations as those in the conventional von Kármán non-linear strains and (2) the use of the polar decomposition theorem as a constraint and a representation for finite rotations in terms of displacement gradients for large deformation beam and plate theories. Classical couple stress theory is recovered for small strains from the ideas expressed in (1) and (2). As a part of this development, an overview of Eringen׳s non-local, Mindlin׳s modified couple stress theory, and the gradient elasticity theory of Srinivasa–Reddy is presented.  相似文献   

17.
Some consistency problems existing in continuum field theories are briefly reviewed.Three arts of consistency problems are clarified based on the renewed basic laws for polar continua.The first art discusses the consistency problems between the basic laws for polar continua.The second art discusses the consistency problems between the basic laws for polar continua and for other nonpolar continua.The third art discusses the consistency problems between the basic laws for micropolar continuum theories and the dynamical equations for rigid body.The results presented here can help us to get a deeper understanding the structure of the basic laws for various continuum theories and the interrelations between them.In the meantime,these results obtained show clearly that the consistency problems could not be solved in the framework of traditional basic laws for continuum field theories.  相似文献   

18.
Some consistency problems existing in continuum field theories are briefly reviewed. Three arts of consistency problems are clarified based on the renewed basic laws for polar continua. The first art discusses the consistency problems between the basic laws for polar continua. The second art discusses the consistency problems between the basic laws for polar continua and for other nonpolar continua. The third art discusses the consistency problems between the basic laws for micropolar continuum theories and the dynamical equations for rigid body. The results presented here can help us to get a deeper understanding the structure of the basic laws for various continuum theories and the interrelations between them. In the meantime, these results obtained show clearly that the consistency problems could not be solved in the framework of traditional basic laws for continuum field theories.  相似文献   

19.
In a period of a few decades, the formulation known as the principle of virtual power (PVP) has gained a prominent place among the most efficient tools in the thermomechanics of continua. Strongly marked by a “continental” (French-Italian) influence, it has successfully incorporated the basic invariances of modern continuum mechanics while capturing the spirit of twentieth-century analysis (generalized functions or distributions) in which it became synonymous of weak formulation. It proved to provide the surest and safest way to formulate complex theories of continua (so-called “generalized continuum mechanics”, theory of coupled fields, etc) and approximate or generalized theories of structural members and the associated natural boundary conditions while preparing the way for the full thermomechanical formulation, providing the best setting for the proof of various mathematical theorems, and paving the way for modern numerical methods. The present contribution, illustrated by many examples of varying complexity, emphasizes the role of Paul Germain (1920–2009) in this formulation. The author, himself an active contributor and a never tired propagandist of the method, has participated in these developments during four decades and presents here his witness but critical viewpoint, highlighting the difficult points and also the esthetically pleasing ones where necessary.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号