首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The response of a sandwich beam subjected to moving forces (constant as well as pulsating) is analyzed by the use of Fourier and Laplace transforms and compared with the response of an equivalent elastic beam. The results indicate that the critical speed of force on a sandwich beam is always greater than that on an elastic beam of identical mass per unit length and flexural rigidity, and depends on its geometric and shear parameters. For subcritical speeds, the maximum deflection of a sandwich beam is shown to occur earlier than that of an equivalent elastic beam. An increase in the core shear stiffness is shown to be beneficial in reducing the dynamic magnification of the central deflection of the sandwich beam.  相似文献   

2.
This is a study of nonlinear traveling wave response of a cantilever circular cylindrical shell subjected to a concentrated harmonic force moving in a concentric circular path at a constant velocity. Donnell's shallow-shell theory is used, so that moderately large vibrations are analyzed. The problem is reduced to a system of ordinary differential equations by means of the Galerkin method. Frequency-responses for six different mode expansions are studied and compared with that for single mode to find the more contracted and accurate mode expansion investigating traveling wave vibration. The method of harmonic balance is applied to study the nonlinear dynamic response in forced oscillations of this system. Results obtained with analytical method are compared with numerical simulation, and the agreement between them bespeaks the validity of the method developed in this paper. The stability of the period solutions is also examined in detail.  相似文献   

3.
4.
We consider the radiation from nonoscillating dipoles traveling with constant velocity directed parallel or antiparallel to the velocity of a homogeneous transparent moving medium. It is assumed that the medium in its rest frame is isotropic and has no spatial dispersion. We obtain expressions for the radiative energy losses and estimate the polarization energy losses of electric and magnetic dipoles of different orientations. In particular, it is shown that the energy loss of a source is negative if it moves in the direction of the medium motion and the source velocity is less than the medium velocity. Estimates for the energy losses of dipoles in the cases of an electron beam and a flow of a weakly dispersive medium are given. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 6, pp. 502–512, June 2006.  相似文献   

5.
Analysis of the coupled thermoelastic vibration for axially moving beam   总被引:2,自引:0,他引:2  
The coupled thermoelstic vibration characteristics of the axially moving beam are investigated. The differential equation of motion of the axially moving beam under the thermoelastic coupling is established based to the equilibrium equation and the thermal conduction equation involving deformation term. The eigenequation is deduced and the dimensionless complex frequencies of the axially moving beam with different boundary conditions under the coupled thermoelastic case are calculated by the differential quadrature method. The curves of the real parts and imaginary parts of the first three-order dimensionless complex frequencies versus the dimensionless axially moving speed are obtained. The effects of the dimensionless coupled thermoelastic factor, the ratio of length to height, the dimensionless moving speed on the stability of the beam are analyzed.  相似文献   

6.
Free vibration and stability are investigated for a cantilever beam attached to an axially moving base in fluid. The equations of motion of the slender cantilever beam affiliated to an axially moving base at a known rate while immersed in an incompressible fluid are derived first. An “axially added mass coefficient” is taken into account in the obtained equations. Then, a coordinate transformation is introduced to fix the boundaries. Based on the Galerkin approach, the natural frequencies of the beam system are numerically analyzed. The effects of moving speed of the base and several other system parameters on the dynamics and stability of the beam are discussed in detail. It is found that when the moving speed exceeds a certain value the beam becomes unstable and the instability type is sensitive to the system parameters. When the values of system parameters, such as mass ratio and axially added mass coefficient, are big enough, however, no instabilities are detected. The variations of the lowest unstable critical moving speed with respect to several key parameters are also investigated.  相似文献   

7.
The non-stationary random vibration of a beam is investigated. The beam is subjected to a random force with constant mean value which is moving with constant speed along the beam. The statistical characteristics of the first and second order for the deflection and bending moment of the beam are computed by using the correlation method. The numerical results of the coefficient of variation of the deflection at beam span mid-point are given for five basic types of convariances of the force (white noise, constant, exponential cosine, exponential, and cosine wave). The effect of the speed of the movement of the force along the beam as well as the effect of the beam damping is investigated in detail. It is concluded that the resulting beam vibration turns out to be a non-stationary process even though the motion considered is that of a stationary random force.  相似文献   

8.
We consider the radiation from oscillating electric and magnetic dipoles moving with constant velocity directed parallel or antiparallel to the velocity of the surrounding medium. It is assumed that the medium in its rest frame is isotropic and has no spatial dispersion. We obtain expressions for the spectral density of the radiated power. In the case of a nondispersive medium, algebraic expressions for the total radiated power in the regime of “subluminal relative motion” are also obtained. In particular, it is shown that the energy loss of a source is negative if it moves in the direction of the superluminal motion of the medium and the source velocity is somewhat smaller than the medium velocity. It is noted that this phenomenon takes place for a smaller difference between the velocities of the source and the medium compared with a similar phenomenon for nonoscillating sources. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 50, No. 4, pp. 316–328, May 2007.  相似文献   

9.
Conditions are established for the generation of a wave pattern with stationary nodes by the superposition of plane waves propagating in a uniformly moving medium. These conditions are then used to derive a closed form expression for the natural frequencies and modes of vibration of a thin strip moving between fixed guides with zero tension and to define an algorithm to determine the natural frequencies and modes of vibration for a wide range of problems of a similar type. The thin strip under tension is used as an example.  相似文献   

10.
11.
A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.  相似文献   

12.
Vibration and dynamic stability of a traveling sandwich beam   总被引:1,自引:0,他引:1  
The vibration and dynamic stability of a traveling sandwich beam are studied using the finite element method. The damping layer is assumed to be linear viscoelastic and almost incompressible. The extensional and shear moduli of the viscoelastic material are characterized by complex quantities. Complex-eigenvalue problems are solved by the state-space method, and the natural frequencies and modal loss factors of the composite beam are extracted. The effects of stiffness and thickness ratio of the viscoelastic and constrained layers on natural frequencies and modal loss factors are reported. Tension fluctuations are the dominant source of excitation in a traveling sandwich material, and the regions of dynamic instability are determined by modified Bolotin's method. Numerical results show that the constrained damping layer stabilizes the traveling sandwich beam.  相似文献   

13.
Here we report on a new approach to the magnetic deceleration of supersonic beams, based on the generation of a propagating wave of magnetic field. Atoms and molecules possessing a magnetic dipole moment, in so-called low field seeking quantum states, are trapped around a node of the propagating wave. The wave travels at a desired velocity in the direction of the supersonic beam, which can be chosen to match a velocity class populated in the beam. An additional quadrupole guide provides transverse confinement, independently of the decelerator itself. Our technique has been conceived to generate a smooth motion of the magnetic wave, which should optimize the efficiency of the trapping during a future Zeeman deceleration of the beam. We demonstrate the trapping of metastable argon atoms in a magnetic wave traveling at selected, constant velocities.  相似文献   

14.
Nonlinear free transverse vibration of an axially moving beam is investigated. A partial-differential equation governing the transverse vibration is derived from the Newton's second law. Under the assumption that the tension of beam can be replaced by the averaged tension over the beam, the partial-differential reduces to a widely used integro-partial-differential equation for nonlinear free transverse vibration. The method of multiple scales is applied directly to two equations to evaluate nonlinear natural frequencies. Numerical examples are presented to demonstrate the analytical results and to highlight the difference between two models. Two models yield the essentially same results for the weak nonlinearity, the small axial speed and the low mode, while the difference between two models increases with the nonlinear term, the axial speed, and the order of mode.  相似文献   

15.
This paper presents a method for reducing the residual vibration of a flexible beam deployed from a translating hub. Whereas previous studies have discussed reducing vibration in translating constant-length beams, this study investigates a vibration reduction method for translating beams of variable length. The partial differential equation of motion for a translating beam is derived and transformed into a variational equation. Based on the discretized equations from the variational equation, the dynamic responses of the flexible beam under translation are analyzed. A vibration reduction method is proposed that is effective for both constant- and variable-length deploying translating beams.  相似文献   

16.
17.
A motor-isolator-seating arrangement is set up and predictions of the vibration transmission to the seating via the isolators is made by using the frequency averaged frequency response characteristics of the seating and motor. These estimates are compared with power measurements made by using alternative methods incorporating frequency response data and accelerations at connecting points. In general, the measurements are found to be in agreement with the predictions, with the exception occurring when significant airborne noise excited the seating. The effects of multipoint couplig are discussed.  相似文献   

18.
19.
The random vibration of a beam impacting a spring-like stop is discussed. The mean square response and the frequency of impacts are obtained by an equivalent linearization. Reasonable agreement is obtained between these results and the results for an equivalent non-linear single-degree-of-freedom system.  相似文献   

20.
A laboratory method is presented by which the viscoelastic properties of compliant materials are measured over a wide frequency range. The test setup utilizes a flexible beam clamped at one end and excited by a shaker at the free end. A small specimen of a compliant material is positioned to support the beam near its midpoint. The deformation from gravity is minimized since the specimen is not loaded by an attached mass. Forced vibration responses measured at two locations along the beam are used to derive a transfer function from which the dynamic properties of compliant materials are directly determined by use of a theoretical procedure investigating the effects of specimen stiffness on the propagation of flexural waves. Sensitivity of the measured properties to experimental uncertainties is investigated. Young's moduli and associated loss factors are determined for compliant materials ranging from low-density closed-cell foams to high-density damping materials. The method is validated by comparing the measured viscoelastic properties to those from an alternative dynamic test method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号