首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the framework of surface elasticity theory, the scattering of plane compressional and shear waves by a single nano-sized coated fiber embedded in an elastic matrix is studied using the method of eigenfunction expansion. The dynamic stress concentration factors along the interface between the coated fiber and the matrix induced by the plane elastic wave and scattering cross section are derived and numerically evaluated. The interface stress, inhomogeneous material constants and thickness of the coated layer on the scattering of the elastic wave become much more important when the radius of the coated-fiber is reduced to the nanometer scale. These were confirmed by the use of numerical results. Our results can aid in understanding the dynamic mechanical properties of nano-composites. The proposed method has potential applications in the characterization of the interfacial layer that links reinforced fibers to their matrix.  相似文献   

2.
Acoustic plane progressive waves incident on a sphere immersed in a nonviscous fluid exert a steady force acting along the direction of wave motion. It is shown here that when an elastic gold sphere is coated with a polymer-type (polyethylene) viscoelastic layer, this force becomes a force of attraction in the long wavelength limit. Kinetic, potential and Reynolds stress energy densities are defined and evaluated with and in the absence of absorption in the layer. Without absorption, the mechanical energy density counteracts the Reynolds stress energy density, which causes a repulsive force. However, in the case of absorption, the attractive force is predicted to be a physical consequence of a mutual contribution of both the mechanical and the Reynolds stress energy densities. This condition provides an impetus for further designing acoustic tweezers operating with plane progressive waves as well as fabricating polymer-coated gold particles for specific biophysical and biomedical applications.  相似文献   

3.
A theoretical investigation of the nonlinear interaction between an acoustic plane wave and an interface formed by two rough, nonconforming surfaces in partial contact is presented. The macroscopic elastic properties of such a nonlinear interface are derived from micromechanical models accounting for the elastic interaction that is characteristic of spherical bodies in contact. These results are used to formulate set of boundary conditions for the acoustic field, which are to be enforced at the imperfect interface. The scattering problem is solved for plane wave incidence by using a simple perturbation approach and the harmonic balance method. Sample results are presented for arbitrary wave polarization and angle of incidence. The relative magnitude of the nonlinear signals and their potential use toward the nondestructive evaluation of imperfect interfaces are assessed. In particular, attention is drawn to the enhanced nonlinear response of an interface insonified by a shear vertical wave in the neighborhood of the longitudinal critical angle. The motivation for this investigation is provided by the need to develop nondestructive methods to detect and localize small, partially closed cracks in metals with coarse microstructures.  相似文献   

4.
A large, flat ultrasonic transmitter and a small receiver are developed for studies of material properties in acoustic transmission goniometry. While the character of the wave field produced by the transmitter can be considered as a plane wave as observed by the receiver, diffraction effects are noticeable near critical angles and result in the appearance of weak but detectable arrivals. Transmitted ultrasonic waveforms are acquired in one elastic silicate glass and two visco-elastic acrylic glass sample plates as a function of the angle of incidence. Phase velocities are determined from modeling of the shape of curves of the observed arrival times versus angle of incidence. The waveform observations are modeled using a phase propagation technique that incorporates full wave behavior including attenuation. Subtle diffraction effects are captured in addition to the main bounded pulse propagation. The full propagation modeling allows for various arrivals to be unambiguously interpreted. The results of the plane wave solution are close to the full wave propagation modeling without any corrections to the observed wave field. This is an advantage as it places confidence that later analyses can use simpler plane wave solutions without the need for additional diffraction corrections. A further advantage is that the uniform bounded acoustic pulse allows for the detection of weak arrivals such as a low energy edge diffraction observed in our experiments.  相似文献   

5.
The aspects related to modelling the frequency dependence of the elastic properties of air-saturated porous materials have been largely neglected in the past for several reasons. For acoustic excitation of porous materials, the material behaviour can be quite well represented by models where the properties of the solid frame have little influence. Only recently has the importance of the dynamic moduli of the frame come into focus. This is related to a growing interest in the material behaviour due to structural excitation. Two aspects stand out in connection with the elastic-dynamic behaviour. The first is related to methods for the characterisation of the dynamic moduli of porous materials. The second is a perceived lack of numerical methods able to model the complex material behaviour under structural excitation, in particular at higher frequencies. In the current paper, experimental data from a panel under structural excitation, coated with a porous material, are presented. In an attempt to correlate the experimental data to numerical predictions, it is found that the measured quasi-static material parameters do not suffice for an accurate prediction of the measured results. The elastic material parameters are then estimated by correlating the numerical prediction to the experimental data, following the physical behaviour predicted by the augmented Hooke?s law. The change in material behaviour due to the frequency-dependent properties is illustrated in terms of the propagation of the slow wave and the shear wave in the porous material.  相似文献   

6.
Millions of miles of pipes are being used for the transportation, distribution, and local use of petroleum products, gas, water, and chemicals. Most of the pipes are buried in soil, leading to the significance of the study on the subject of guided wave propagation in pipes with soil influence. Previous investigations of ultrasonic guided wave propagation in an elastic hollow cylinder and in an elastic hollow cylinder coated with a viscoelastic material have led to the development of inspection techniques for bare and coated pipes. However, the lack of investigation on guided wave propagation in hollow cylinders embedded in infinite media like soil has hindered the development of pipe inspection methods. Therefore the influence of infinite media on wave propagation is explored in this paper. Dispersion curves and wave structures of both axisymmetric and nonaxisymmetric wave modes are developed. Due to the importance of the convergence of numerical calculations, the requirements of thickness and element number of the finite soil layer between hollow cylinder and infinite element layer are discussed, and an optimal combination is obtained in this paper. Wave structures are used for the mode identification in the non-monotonic region caused by the viscoelastic properties of coating and infinite media.  相似文献   

7.
Surface acoustic waves (SAW) have been measured by means of Brillouin scattering (BS) both as a function of k×h and the direction of k in the sample plane (k is the wavevector of the surface acoustic mode and h the thickness of the film). The velocity of the Rayleigh wave on sufficiently thick films (h > 4000 Å) has been experimentally found to ve uneffected by the elastic properties of the substrate material. Thus the directional dependence of the hypersonic surface wave is completely determined by the elastic properties of the layer material alone and reflects its crystallographic symmetry. The SL's can be treated as media with effective elastic constants because the wavelength of the thermally excited Rayleigh wave is much longer than the SL period. Furthermore, the angular dispersion of the SAW can be used to calculate the elastic constants of each film separately.  相似文献   

8.
F.G. Mitri 《Annals of Physics》2008,323(7):1604-1620
Starting from the exact acoustic scattering from a sphere immersed in an ideal fluid and centered along the propagation axis of a standing or quasi-standing zero-order Bessel beam, explicit partial-wave representations for the radiation force are derived. A standing or a quasi-standing acoustic field is the result of propagating two equal or unequal amplitude zero-order Bessel beams, respectively, along the same axis but in opposite sense. The Bessel beam is characterized by the half-cone angle β of its plane wave components, such that β = 0 represents a plane wave. It is assumed here that the half-cone angle β for each of the counter-propagating acoustic Bessel beams is equal. Fluid, elastic and viscoelastic spheres immersed in water are treated as examples. Results indicate the capability of manipulating spherical targets based on their mechanical and acoustical properties. This condition provides an impetus for further designing acoustic tweezers operating with standing or quasi-standing Bessel acoustic waves. Potential applications include particle manipulation in micro-fluidic lab-on-chips as well as in reduced gravity environments.  相似文献   

9.
刘聪  徐晓东  刘晓峻 《物理学报》2013,62(20):204302-204302
利用传递矩阵法, 从理论上建立了全向入射条件下一维固-流周期结构中的声传播模型, 在此基础上计算、分析并比较了无限周期结构的声能带结构和有限周期结构中的声传输特性. 研究结果表明, 当声波以一定的入射角入射时, 固-流周期结构的低频通带区域存在一个声裂隙, 该声裂隙所对应的入射角大小与构成周期结构的固体层和流体层的密度或结构尺寸无关, 而仅取决于构成该周期性结构材料的波速. 关键词: 传递矩阵 全向入射 固-流周期结构 声裂隙  相似文献   

10.
Acoustic radiation forces associated with high intensity focused ultrasound stimulate shear wave propagation allowing shear wave speed and shear viscosity estimation of tissue structures. As wave speeds are meters per second, real time displacement tracking over an extend field-of-view using ultrasound is problematic due to very high frame rate requirements. However, two spatially separated dynamic external sources can stimulate shear wave motion leading to shear wave interference patterns. Advantages are shear waves can be imaged at lower frame rates and local interference pattern spatial properties reflect tissue's viscoelastic properties. Here a theoretical analysis of shear wave interference patterns by means of dynamic acoustic radiation forces is detailed. Using a viscoelastic Green's function analysis, tissue motion due to a pair of focused ultrasound beams and associated radiation forces are presented. Overall, this paper theoretically demonstrates shear wave interference patterns can be stimulated using dynamic acoustic radiation forces and tracked using conventional ultrasound imaging.  相似文献   

11.
Diffraction of an acoustic wave by an elastic cylinder near the surface of an elastic halfspace is considered. The solution relies on a Helmholtz-type integral equation and uses the Green function of an elastic halfspace. The latter function is represented in the form of an integral over the Sommerfeld contour on the plane of a complex variable that has the meaning of the angle of the wave incidence on the halfspace boundary. An integral equation for the sound pressure distribution over the cylinder surface is derived. This equation is reduced to an infinite system of equations for the Fourier-series expansion coefficients of this distribution. The results obtained are valid for the diffraction of a cylindrical wave and a plane wave. They also describe the diffraction of a spherical wave when the transmitter and receiver are far from the cylinder and lie in one plane that is orthogonal to the cylinder axis.  相似文献   

12.
The assessment of viscoelastic properties of soft tissues is enjoying a growing interest in the field of medical imaging as pathologies are often correlated with a local change of stiffness. To date, advanced techniques in that field have been concentrating on the estimation of the second order elastic modulus (mu). In this paper, the nonlinear behavior of quasi-incompressible soft solids is investigated using the supersonic shear imaging technique based on the remote generation of polarized plane shear waves in tissues induced by the acoustic radiation force. Applying a theoretical approach of the strain energy in soft solid [Hamilton et al., J. Acoust. Soc. Am. 116, 41-44 (2004)], it is shown that the well-known acoustoelasticity experiment allowing the recovery of higher order elastic moduli can be greatly simplified. Experimentally, it requires measurements of the local speed of polarized plane shear waves in a statically and uniaxially stressed isotropic medium. These shear wave speed estimates are obtained by imaging the shear wave propagation in soft media with an ultrafast echographic scanner. In this situation, the uniaxial static stress induces anisotropy due to the nonlinear effects and results in a change of shear wave speed. Then the third order elastic modulus (A) is measured in agar-gelatin-based phantoms and polyvinyl alcohol based phantoms.  相似文献   

13.
Models of frequency response, acoustic transmission, and transient wave propagation are presented for a two-dimensional composite of elastic and viscoelastic layers, simply supported at the two boundaries. The three models adopt transfer matrices to relate state variables over the two faces of a layer. In the frequency domain, a viscoelastic constitutive law is derived by nonlinear fitting a Padé series to measured data of complex shear modulus. For an elastic material, the eigenproblem admits positive real eigenvalues and their negatives. For a viscoelastic material, it admits positive complex eigenvalues and their negative conjugates. The imaginary part of the eigenvalue acts as a velocity-dependent viscous damper. Modal analysis solving transient response utilizes the complex eigenquantities and the static-dynamic superposition method.  相似文献   

14.
A theoretical model of the acoustic performance of asymmetric sandwich panels is developed and verified by comparison with experimental data. The panel models consist of unequal elastic isotropic skins sandwiching an elastic orthotropic core. Damping is incorporated in both the skins and the core. The roles of various structural and material properties are determined via a parametric study. The importance of phase wave speeds and panel impedances for physically symmetric panels is discussed, as are implications for transmission loss characterization. For asymmetric panels it is seen that a relatively thick skin on one side produces some change in the transmission loss.  相似文献   

15.
The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.  相似文献   

16.
线性黏弹性各向异性介质速度频散和衰减特征研究   总被引:13,自引:0,他引:13       下载免费PDF全文
杜启振  杨慧珠 《物理学报》2002,51(9):2101-2108
地层岩石既非各向同性的,也非完全弹性的,正确地描述波在地层中的传播需要搞清楚岩石的各向异性和黏弹性特征.针对裂缝性地层的裂缝发育方位问题,建立具有任意方位角的方位各向异性黏弹性本构关系.使用均匀平面简谐波分析方法研究其频散关系,得到Christoffel方程,进而获得均匀平面波的复速度、相速度、衰减系数和品质因子的表达式.通过黏弹性方位各向异性页岩和砂岩进行模拟,研究了波场在地层中的传播特征,如相速度、衰减系数和品质因子等随频率、方位和入射角的变化关系 关键词: 黏弹性 各向异性 相速度 衰减系数 品质因子  相似文献   

17.
F.G. Mitri 《Annals of Physics》2008,323(11):2840-2850
The exact analytical solution for the scattering of a generalized (or “hollow”) acoustic Bessel beam in water by an elastic sphere centered on the beam is presented. The far-field acoustic scattering field is expressed as a partial wave series involving the scattering angle relative to the beam axis and the half-conical angle of the wave vector components of the generalized Bessel beam. The sphere is assumed to have isotropic elastic material properties so that the nth partial wave amplitude for plane wave scattering is proportional to a known partial-wave coefficient. The transverse acoustic scattering field is investigated versus the dimensionless parameter ka(k is the wave vector, a radius of the sphere) as well as the polar angle θ for a specific dimensionless frequency and half-cone angle β. For higher-order generalized beams, the acoustic scattering vanishes in the backward (θ = π) and forward (θ = 0) directions along the beam axis. Moreover it is possible to suppress the excitation of certain resonances of an elastic sphere by appropriate selection of the generalized Bessel beam parameters.  相似文献   

18.
In this work, a new expression of the acoustic radiation force function Yst for solid cylindrical targets, suspended in inviscid fluids in a plane standing wave field, is presented. The case of a plane quasistanding wave field is also considered. Numerical calculations of the radiation force function Yst are performed in a wide range of frequencies for elastic and viscoelastic cylinders and compared to those of rigid cylinders. The fluid-loading effect on the radiation force function curves is also analysed. The results show several features quite different from the rigid cylinder solution.  相似文献   

19.
F.G. Mitri 《Ultrasonics》2010,50(7):675-682

Background and objective

The analysis of the acoustic backscattering enhancements from tilted cylinders is of particular importance in determining some of the (visco)elastic properties of the cylinder, and/or its surrounding fluid in ultrasonic non-destructive evaluation (NDE) and imaging (NDI) applications. Previous related investigations on an aluminum cylinder limited to incidence angles varying from 0° to 40°, revealed the existence of an anomalous “pseudo-Rayleigh” mode (above the critical Rayleigh angle) identified as the rigid-body translational dipole (n = 1) mode. The objective here is to provide a complete investigation on the backscattering enhancements for incidence angles larger than 40° for various elastic and viscoelastic cylinder materials.

Method

Using the partial-wave series solution for the linear scattering by an infinite circular cylinder, the acoustic backscattering from isotropic elastic and viscoelastic (polymer-type) cylinders excited by an obliquely incident plane acoustic wave is investigated. Total and resonance backscattering form functions are calculated for several elastic and viscoelastic cylinder materials immersed in water versus the angle of incidence 0° ? α < 90°. The “pure” resonance peaks are isolated by subtracting a rigid background from the total form function, so the associated resonance modes are properly identified.

Results and conclusion

The plots of the partial-wave series reveal acoustic backscattering enhancements (not shown in previous investigations) generally occurring at ka? 0.1 at a critical angle αc bounded by the longitudinal and shear waves coupling angles θL=sin-1(c/cL) and θS=sin-1(c/cS) such that θL<αc<θS (where cL and cS are the phase velocities of the longitudinal and shear waves inside the elastic cylinder, and c is the speed of sound in the surrounding medium). It is shown here that the backscattering enhancements with a critical angle θL<αc<θS result from the excitation of the monopole (= 0) resonance mode. Moreover, additional acoustic backscattering enhancements still occur in the range 1 ?ka? 6 even though the angle of tilt is greater than the Rayleigh wave coupling angle θR=sin-1(c/cR) (where cR is the Rayleigh wave velocity in an elastic half-space). The resonance scattering theory shows that such additional enhancements are associated with the excitation of a dipole (n = 1) resonance mode which may result from the interference of meridional and/or helical waves propagating along the cylinder’s surface. It is therefore essential to consider tilt angles ranging from normal to end-on incidence for a complete analysis of the backscattering by elastic and viscoelastic cylinders.  相似文献   

20.
水声材料横波声速和衰减系数参量源法测量系统   总被引:1,自引:0,他引:1  
李水  唐海清 《声学学报》2005,30(4):317-323
提出了测量10-100 kHz频段水声材料平均横波声速和衰减系数的测量系统,系统具有低频、小尺寸、窄波束的特点。测量装置应用截断参量源作为声源,结合了精密的坐标系统。在对平板声压透射系数的平面波模型进行理论修正和实验研究的基础上,测量平板样品的透射系数(插入损失)的频谱和角谱,并采用曲线拟合方法来估计样品在测量频段的平均横波声速和衰减系数。在2 m×1 m×1.5 m消声水槽中,对一些典型样品(尺寸500 mm×600 mm)进行了测量实验,结果表明,水声材料样品在声波不同入射角时的声学性能有较大差异,不能用声波垂直入射时的声学性能数据代替;横波声速和衰减系数是评定水声材料声学性能的重要参数,尤其在声波斜入射情况下;在研究材料构件或复杂器件的声学性能时它们也是必不可少和不能不考虑的。实验还验证了测量方法和系统的可行性,也表明仅在这一频段的测量还远不能满足水声工程的实际需求,有必要将测量方法应用扩展到更低或更高的频段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号