首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed experimental results and analytical results are presented on chaotic vibrations of a shallow cylindrical shell-panel subjected to gravity and periodic excitation. The shallow shell-panel with square boundary is simply supported for deflection. In-plane displacement at the boundary is elastically constrained by in-plain springs. In the experiment, the cylindrical shallow shell-panel with thickness 0.24 mm, square form of length 140 mm and mean radius 5150 mm is used for the test specimen. All edges around the shell boundary are simply supported by adhesive flexible films. First, to find fundamental properties of the shell-panel, linear natural frequencies and characteristics of restoring force of the shell-panel are measured. These results are compared with the relevant analytical results. Then, geometrical parameters of the shell-panel are identified. Exciting the shell-panel with lateral periodic acceleration, nonlinear frequency responses of the shell-panel are obtained by sweeping the frequency of periodic acceleration. In typical ranges of the exciting frequency, predominant chaotic responses are generated. Time histories of the responses are recorded for inspection of the chaos. In the analysis, the Donnell equation with lateral inertia force is introduced. Assuming mode functions, the governing equation is reduced to a set of nonlinear ordinary differential equations by the Galerkin procedure. Periodic responses are calculated by the harmonic balance method. Chaotic responses are integrated numerically by the Runge-Kutta-Gill method. The chaotic responses, which are obtained by the experiment and the analysis, are inspected with the Fourier spectra, the Poincaré projections, the maximum Lyapunov exponents and the Lyapunov dimension. It is found that the dominant chaotic responses of the shell-panel are generated from the responses of the sub-harmonic resonance of order and of the ultra-sub-harmonic resonance of order. By the convergence of the maximum Lyapunov exponent to the embedding dimension, the number of predominant vibration modes which contribute to the chaos is found to be three or four. Fairly good agreements are obtained between the experimental results and the analytical results.  相似文献   

2.
The problem of acoustic radiation from an infinite cylinder undergoing harmonic modal surface vibrations near a locally reacting planar boundary is considered. The formulation utilizes the appropriate wave field expansions, the classical method of images, and the translational addition theorem for cylindrical wave functions, along with a simple local surface reaction model involving a complex amplitude wave reflection coefficient applied to simulate the relevant boundary conditions for the given configuration. The analytical results are illustrated with a numerical example in which the cylindrical surface is immersed near a layer of fibrous material set on an impervious rigid wall. The numerical results reveal the important effects of interface local surface reaction and source position on the computed modal impedance component values and the radiated on-axis far-field pressure. The benchmark solution presented can lead to a better understanding of acoustic radiation from near-interface two-dimensional sources, which are commonly encountered problems in outdoor acoustics and noise control engineering. Eventually, it could be used to validate those found by numerical approximation techniques.  相似文献   

3.
A method for the time history of motion of shallow shells of viscoelastic material under arbitrary time-dependent transverse load is presented. The method is based upon the concept of iso-amplitude contour lines on the surface of the shell. It is shown that the time behavior can be found by using the frequency of free vibration of the associated elastic shallow shell. As an illustration of the technique, the problem of a shallow dome upon an elliptic base is discussed, all details of which are explained by graphs.  相似文献   

4.
5.
6.
A method for the study of thermally induced vibrations of viscoelastic shallow shells of arbitrary shaped plane-form is proposed. It is shown that the time behaviour can be found by assuming a normal mode expansion in tems of the eigenfunctions of the associated elastic shallow shell problem and the deflection is obtained with the aid of the correspondence principle. The response of a shallow shell with rectangular as well as elliptical base to the sudden application of a temperature distribution on the surface of the shell is discussed. For rapidly applied heat inputs, an approximate analysis for its rapid estimation is also presented. All details are illustrated by graphs.  相似文献   

7.
Spatially complex, temporally chaotic dynamics of N-coupled impact oscillators connected by a string are studied experimentally using a discrete measure of the motion for each of the masses. For N=8, a binary assignment of symbols, corresponding to whether or not the masses impact an amplitude constraint, is used to code the spatial pattern as a binary number and to store its change in time in a computer. A spatial pattern return map is then used to observe the change in spatial patterns with time. Bifurcations in spatial impact patterns are observed in this experiment. An entropy measure is also used to characterize the dynamics. Numerical simulation shows behavior similar to the experimental system.  相似文献   

8.
The influence of large amplitude on the free vibrations of a long shallow cylindrical panel with straight edges clamped and resting on a non-linear elastic foundation is investigated. The equilibrium of the panel when subjected to an external pressure is also studied.  相似文献   

9.
Nonlinear vibrations of functionally graded doubly curved shallow shells   总被引:1,自引:0,他引:1  
Nonlinear forced vibrations of FGM doubly curved shallow shells with a rectangular base are investigated. Donnell’s nonlinear shallow-shell theory is used and the shell is assumed to be simply supported with movable edges. The equations of motion are reduced using the Galerkin method to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities. Using the multiple scales method, primary and subharmonic resonance responses of FGM shells are fully discussed and the effect of volume fraction exponent on the internal resonance conditions, softening/hardening behavior and bifurcations of the shallow shell when the excitation frequency is (i) near the fundamental frequency and (ii) near two times the fundamental frequency is shown. Moreover, using a code based on arclength continuation method, a bifurcation analysis is carried out for a special case with two-to-one internal resonance between the first and second doubly symmetric modes with respect to the panel’s center (ω13≈2ω11). Bifurcation diagrams and Poincaré maps are obtained through direct time integration of the equations of motion and chaotic regions are shown by calculating Lyapunov exponents and Lyapunov dimension.  相似文献   

10.
The geometrically non-linear vibrations of linear elastic composite laminated shallow shells under the simultaneous action of thermal fields and mechanical excitations are analysed. For this purpose, a model based on a very efficient p-version first-order shear deformation finite element, with hierarchical basis functions, is employed. The equations of motion are solved in the time domain by a Newmark implicit time integration method. The model and code developed are partially validated by comparison with published data. Parametric studies are carried out in order to study the influence of temperature change, initial curvature, panel thickness and fibre orientation on the shells’ dynamics.  相似文献   

11.
Nonlinear processes in magnetized plasma are very much important for the proper understanding of many space and astrophysical events. One of the most important type of study has been done in the domain of Alfven waves. Here we show that a Galerkin type approximation of the DNLS (Derivative Nonlinear Schrödinger) equation describing such wave propagation leads to a new type of nonlinear dynamical systems, very much rich in chaotic properties. Starting with the detailed analysis of fixed points and stability zones we make an in depth study of the unstable periodic orbits, which span the whole attractor. Next the birth of a Hopf bifurcation is identified and normal form, limit cycle analyzed. In the course of our study the detailed structure of the attractor is analyzed. A possibility of internal crisis is also indicated. These results will help in the choice of the plasma parameters for the actual physical situation.  相似文献   

12.
This study investigates the two-to-one internal resonance of the shallow arch with both ends elastically constraining, and the primary resonance case is considered. The full-basis Galerkin method and the multi-scale method are applied to obtain the modulation equations. It is shown that the natural frequencies of the first two modes cross/avoid to each other when the stiffness of elastic supports at two ends is the same/different. Moreover, the nonlinear modal interactions between these two modes may not/may be activated. The force/frequency-response curves are employed to explore the nonlinear response of the elastically supported shallow arch. The saddle-node bifurcation points and Hopf bifurcation points are observed in these cases. Moreover, the dynamic solutions, i.e., the periodic solution, quasi-periodic solution and chaotic solution are discussed. The numerical simulations are used to illustrate the route to chaos via period-doubling bifurcation.  相似文献   

13.
We study classical trajectories corresponding to L=0 vibrations in the geometric collective model of nuclei with stable axially symmetric quadrupole deformations. It is shown that with increasing stability against the onset of triaxiality the dynamics passes between a fully regular and semiregular limiting regime. In the transitional region, an interplay of chaotic and regular motions results in complex oscillatory dependence of the regular phase space on the Hamiltonian parameter and energy.  相似文献   

14.
We analyze experimentally and theoretically >1 GHz optoexcited mechanical vibration in an on-chip micron-scaled sphere. Different eigen-mechanical modes are excited upon demand by the centrifugal radiation pressure of the optical whispering-gallery-mode, enabling an optomechanical modal spectroscopy investigation of many vibrational modes. Spectral analysis of the light emitted from the device enables deduction of its natural vibrational modes in analogy with spectroscopy of a molecule's vibrational levels, and its eccentricity perturbation is shown to induce spectral splitting.  相似文献   

15.
The interaction of a powerful light beam with a one dimensional crystal lattice consisting of anisotropic and axially symmetric molecules is discussed. Translational and rotational vibrations are taken into account.  相似文献   

16.
It is demonstrated that resonant interaction of a thin bar with a shear shallow-water flow results in the development of wind instability. The dispersion equation and the instability increment are derived. The wavelength range in which the instability exists is narrowed down when the sound velocity decreases. The frequency and increment of bending waves are estimated numerically for various flow parameters.  相似文献   

17.
Energy transfer from higher modes of capillary vibrations of an incompressible liquid charged drop to the lowest fundamental mode under four-mode resonance is studied. The resonance appears when the problem of nonlinear axisymmetric capillary vibration of a drop is solved in the third-order approximation in amplitude of the multimode initial deformation of the equilibrium shape of the drop. Although the resonant interaction mentioned above builds up the fundamental mode even in the first order of smallness, its amplitude turns out to be comparable to a quadratic (in small parameter) correction arising from nonresonant nonlinear interaction, since the associated numerical coefficients are small.  相似文献   

18.
李沁然  孙超  谢磊 《物理学报》2022,(2):142-154
内孤立波是一种常见于浅海海域的非线性内波,具有振幅大、周期短和流速强等特点,它通过扰动水体中的温盐分布使声速剖面产生明显的距离依赖性,进而影响水下声传播特性.内波自生成后通常以1 m/s量级的速度传播,运动的内波使声传播路径上的声波模态能量在空间和时间上剧烈起伏.本文定义模态强度为模态系数模值(模态幅度)的平方,并用其衡量各阶模态所含声能量的大小.文中基于耦合简正波理论,推导了内波运动时声波模态强度起伏的表达式,将模态强度表征为振荡项和趋势项的线性叠加.以往的工作大多局限于单独从时域或频域研究内波运动时声波模态强度的时变规律,本文则结合短时傅里叶变换在时频平面上揭示了模态强度的起伏机理.理论推导和数值仿真均表明内孤立波使各阶声波模态之间发生能量交换,即模态耦合.内波的动态传播进一步引起模态干涉,这种干涉效应表现为模态强度中的振荡项并使模态强度随时间快速起伏.受模态剥离效应(不同阶模态之间衰减系数的差异)的影响,趋势项的幅度随时间不断变化,进而对模态干涉引起的振荡叠加了时变的偏置.模态强度的整体走势和振荡项中各频率分量振幅的时变特征均与模态衰减密切相关.同时,本文使用深度积分声强作为总接...  相似文献   

19.
20.
Both nonlinear oscillations and chaotic behavior in n-InSb are experimentally investigated for the case of impact ionization of shallow donors at low temperatures. Complex behavior including a simple periodic oscillation, a period-doubling route to chaos, and quasiperiodic behavior are observed with increasing electric field as the parameter. For the first time, a type of pitchfork bifurcation (period halving) is seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号