首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
This paper proposes the design and experiment of a vibration isolator capable of isolating a wide range of loads. The isolator consists of two oblique springs and one vertical spring to achieve quasi-zero stiffness at the equilibrium position. The quasi-zero-stiffness characteristic makes the isolator attenuate external disturbance more at low frequencies, when compared with linear isolators. Unlike previous studies, this paper focuses on the analysis of the effect of different loads and the implementation of an adjustment mechanism to handle a wide range of loads. To ensure zero stiffness under imperfect stiffness matching, a lateral adjustment mechanism is also proposed. Instead of using coil springs, special planar springs are designed to realize the isolator in a compact space. Static and dynamic models are developed to evaluate the effect of key design parameters so that the isolator can have a wide isolation range without sacrificing its size. A prototype and its associated experiments are presented to validate the transmissibility curves under three different loads. The results clearly show the advantage of quasi-zero-stiffness isolators against linear isolators.  相似文献   

2.
The frequency range over which a linear passive vibration isolator is effective is often limited by the mount stiffness required to support a static load. This can be improved upon by incorporating a negative stiffness element in the mount such that the dynamic stiffness is much less than the static stiffness. In this case, it can be referred to as a high-static-low-dynamic stiffness (HSLDS) mount. This paper is concerned with a theoretical and experimental study of one such mount. It comprises two vertical mechanical springs between which an isolated mass is mounted. At the outer edge of each spring, there is a permanent magnet. In the experimental work reported here, the isolated mass is also a magnet arranged so that it is attracted by the other magnets. Thus, the combination of magnets acts as a negative stiffness counteracting the positive stiffness provided by the mechanical springs. Although the HSLDS suspension system will inevitably be nonlinear, it is shown that for small oscillations the mount considered here is linear. The measured transmissibility is compared with a comparable linear mass-spring-damper system to show the advantages offered by the HSLDS mount.  相似文献   

3.
This paper presents a vertical quasi-zero stiffness (QZS) vibration isolator with a mechanism for adjusting restoring force. QZS vibration isolators have high initial stiffness and QZS around the static equilibrium position. This way, excessive deformation due to self-weight can be avoided while having enough vibration reduction capability to dynamic excitations. One of the main issues left for QZS vibration isolators is the difficulty in keeping the vibration reduction capability when the vibration isolated object is replaced. In such a case, adjustment of its restoring force becomes necessary in accordance with the self-weight of the newly placed vibration isolated object. This paper attempts to address this issue by proposing a mechanism that enables quick and easy adjustment of the restoring force of a QZS vibration isolator. The proposed mechanism consists of cranks and a screw jack. With the present mechanism, the restoring force provided by horizontally placed springs can be converted into the vertical restoring force of the vibration isolator. In the conversion, the vertical resisting force can be adjusted simply by applying and removing torque to the screw jack to change and hold the angle of inclined bars placed in the cranks. In this study, a prototype of a class of QZS vibration isolator having the proposed mechanism is produced. Shaking table tests are performed to demonstrate the efficacy of the present mechanism, where the produced prototype is subjected to various sinusoidal and earthquake ground motions. It is demonstrated through the shaking table tests that the produced prototype can reduce the response acceleration within the same tolerance even when the mass of the vibration isolated object is changed.  相似文献   

4.
徐伟  黄冬梅  谢文贤 《中国物理 B》2016,25(3):30502-030502
In this paper, multi-valued responses and dynamic properties of a nonlinear vibro-impact system with a unilateral nonzero offset barrier are studied. Based on the Krylov–Bogoliubov averaging method and Zhuravlev non-smooth transformation, the frequency response, stability conditions, and the equation of backbone curve are derived. Results show that in some conditions impact system may have two or four steady-state solutions, which are interesting and not mentioned for a vibro-impact system with the existence of frequency island phenomena. Then, the classification of the steady-state solutions is discussed, and it is shown that the nontrivial steady-state solutions may lose stability by saddle node bifurcation and Hopf bifurcation. Furthermore, a criterion for avoiding the jump phenomenon is derived and verified. Lastly, it is found that the distance between the system's static equilibrium position and the barrier can lead to jump phenomenon under hardening type of nonlinearity stiffness.  相似文献   

5.
A tunable high-static-low-dynamic stiffness vibration isolator   总被引:4,自引:0,他引:4  
In this study, a novel vibration isolator is developed. The developed isolator possesses the characteristics of high-static-low-dynamic stiffness (HSLDS) and can act passively or semi-actively. The HSLDS property of the isolator is obtained by connecting a mechanical spring, in parallel with a magnetic spring that is constructed by a pair of electromagnets and a permanent magnet. The mechanical spring is a structural beam whose stiffness exhibits a hardening behavior. The stiffness of the magnetic spring can be positive or negative, depending on the polarity of the current to the electromagnets. A passive HSLDS isolator is obtained when the electromagnet current is zero. In the stiffness characterization study, the analytical model for each of the springs is established and the tuning parameters are identified. Using the stiffness models, the design optimization issues are investigated. In the experimental study, the effectiveness of the isolator for vibration isolation is tested. The analytical natural frequencies of the isolator are validated experimentally. The relationships between the displacement transmissibility and the exciting frequency are measured both under the passive mode and under the semi-active mode. The on-line tuning capability of the isolator is investigated.  相似文献   

6.
This paper deals with a particular arrangement of a statically balanced system using 3 springs of prescribed material stiffness and critical geometrical parameter. The dynamics is described by a nonlinear differential equation upto septic power following odd nonlinearity for small disturbance from static equilibrium position. The governing differential equation is solved analytically by the combination of the linearisation of the equation with the method of Harmonic Balancing to observe the low natural frequency at fixed point and a finite displacement range in the neighbourhood of the equilibrium point where the dynamic stiffness is low. By this approximation method, the behaviour of the displacement with increase in time as well as the phase-plot of Cubic Quintic Septic Duffing equation for a set of parameter values is studied at the equilibrium position and its neighbourhood.  相似文献   

7.
张莹  徐伟  方同  徐旭林 《中国物理》2007,16(7):1923-1933
In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer--van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.  相似文献   

8.
针对光电载荷对隔振性能的需求,提出一种采用菱形连杆机构作为负刚度组件,具有高静、低动刚度特点的非线性隔振器(简称菱形HSLDS隔振器)。采用静力学分析方法,建立了隔振器数学模型,研究了刚度参数设定以及非线性调节方法;利用谐波平衡法(HBM)求解动力学方程,分析了各参数对隔振性能的影响关系;采用动力学仿真软件ADAMS及实物样机对理论模型与结论进行了验证。测试结果表明:菱形HSLDS隔振器具有较方便的参数调整能力,零位刚度及刚度非线性可通过拉簧参数与连杆参数进行设定、优化,隔振的刚度非线性优化程度受主隔振器阻尼以及零位刚度参数影响。相比于传统线性隔振器,菱形HSLDS具有显著的非线性隔振优势,可较好地满足光电载荷隔振需求。  相似文献   

9.
This paper elaborates a nonlinear fluidic low frequency vibration isolator designed with the characteristics of quasi-zero stiffness (QZS). The existing model of QZS vibration isolator enhances amplitude of vibration and attenuating vibration frequencies. This concern with displacement plays a vital role in the performance and instability of oblique spring setup reduces the isolator performance in horizontal non-nominal loads, in this accordance; this paper associates double acting hydraulic cylinder (fluidic actuators in short) in oblique and helical coil spring. An approximate expression of unique analytical relationship between the stiffness of vertical spring and bulk modulus of the fluid is derived for Quasi – Zero Stiffness Non-Linear Vibration Isolator with Fluidic Actuators (NLVIFA in short) system and the force transmissibility is formulated and damping ratio are discussed for characteristic analysis. Modal analysis carried out and compared with analytical results and an experimental prototype is developed and investigated. The performance of the NLVIFA reduces the external embarrassment more at low frequencies and the series of experimental studies showing that the soft nonlinearity causes limitation in the resonant frequency thereupon the isolation will be enhanced and NLVIFA greatly outperform some other type of nonlinear isolators.  相似文献   

10.
孟宗  付立元  宋明厚 《物理学报》2013,62(5):54501-054501
针对一类具有非线性刚度、非线性阻尼的非线性相对转动系统, 应用耗散系统的拉格朗日原理建立在组合谐波激励作用下非线性相对转动系统的动力学方程. 构造李雅普诺夫函数, 分析相对转动系统的稳定性, 研究自治系统的分岔特性. 应用多尺度法求解相对转动系统的非自治系统在组合激励作用下的分岔响应方程. 最后采用数值仿真方法, 通过分岔图、时域波形、相平面图、Poincaré截面图等研究外扰激励、系统阻尼、 非线性刚度对相对转动系统经历倍周期分岔进入混沌运动的影响. 关键词: 相对转动 组合激励 分岔 混沌  相似文献   

11.
The vibration isolator using a novel magnetic spring with negative stiffness (MS-NS) is proposed in this paper. The proposed isolator which combines a positive stiffness spring with the MS-NS in parallel possesses the characteristic of high-static–low-dynamic stiffness. The MS-NS is composed of three cuboidal magnets configured in repulsive interaction. An analytical expression of the stiffness of the MS-NS is derived by using the magnetic charge model, and the approximation to the exact analytical expression is sought. Then, the nonlinearity of the stiffness is analyzed, and it is shown that the MS-NS is approximately linear for small oscillations. In order to validate the correctness and effectiveness of the MS-NS, the vibration transmissibility of the proposed isolator with and without the MS-NS is measured. The experimental results demonstrate that combining a vibration isolator with the MS-NS in parallel can lower the natural frequency of the isolator; and the analytical calculations and experimental results show a good consistency.  相似文献   

12.
Helical springs constitute an integral part of many mechanical systems. Usually, a helical spring is modelled as a massless, frequency independent stiffness element. For a typical suspension spring, these assumptions are only valid in the quasi-static case or at low frequencies. At higher frequencies, the influence of the internal resonances of the spring grows and thus a detailed model is required. In some cases, such as when the spring is uniform, analytical models can be developed. However, in typical springs, only the central turns are uniform; the ends are often not (for example, having a varying helix angle or cross-section). Thus, obtaining analytical models in this case can be very difficult if at all possible. In this paper, the modelling of such non-uniform springs are considered. The uniform (central) part of helical springs is modelled using the wave and finite element (WFE) method since a helical spring can be regarded as a curved waveguide. The WFE model is obtained by post-processing the finite element (FE) model of a single straight or curved beam element using periodic structure theory. This yields the wave characteristics which can be used to find the dynamic stiffness matrix of the central turns of the spring. As for the non-uniform ends, they are modelled using the standard finite element (FE) method. The dynamic stiffness matrices of the ends and the central turns can be assembled as in standard FE yielding a FE/WFE model whose size is much smaller than a full FE model of the spring. This can be used to predict the stiffness of the spring and the force transmissibility. Numerical examples are presented.  相似文献   

13.
Solid and Liquid Mixture (SALiM) vibration isolator is a new isolator which is designed for vibration isolation of heavy equipment with low frequency. The isolator contains liquid and elastic solid elements as working media. To get the stiffness property of the isolator, this paper establishes the mechanics model of elastic solid elements by introducing plate-shell model. Considering geometry nonlinearity, the stiffness of the element under outer liquid pressure and inner air pressure was obtained by perturbation method. Then the stiffness of isolator is derived. As a result, the stiffness is piecewise linear-nonlinear and determined by parameters of the elastic elements and elastic container. In addition, the equation of motion (EOM) of a single degree of freedom system supported by a SALiM isolator is given. The properties of the frequency response function (FRF) of the system are analysed using averaging method which is a classical approximation approach for estimating nonlinear system FRF. And it is found that the system with SALiM isolator shows softening stiffness behaviour. The jumping phenomenon clearly occurs under certain condition. Finally, the vibration isolation property is predicted based on energy transmissibility (ET) in different cases.  相似文献   

14.
Vibration-induced gear noise and dynamic loads remain key concerns in many transmission applications that use planetary gears. Tooth separations at large vibrations introduce nonlinearity in geared systems. The present work examines the complex, nonlinear dynamic behavior of spur planetary gears using two models: (i) a lumped-parameter model, and (ii) a finite element model. The two-dimensional (2D) lumped-parameter model represents the gears as lumped inertias, the gear meshes as nonlinear springs with tooth contact loss and periodically varying stiffness due to changing tooth contact conditions, and the supports as linear springs. The 2D finite element model is developed from a unique finite element-contact analysis solver specialized for gear dynamics. Mesh stiffness variation excitation, corner contact, and gear tooth contact loss are all intrinsically considered in the finite element analysis. The dynamics of planetary gears show a rich spectrum of nonlinear phenomena. Nonlinear jumps, chaotic motions, and period-doubling bifurcations occur when the mesh frequency or any of its higher harmonics are near a natural frequency of the system. Responses from the dynamic analysis using analytical and finite element models are successfully compared qualitatively and quantitatively. These comparisons validate the effectiveness of the lumped-parameter model to simulate the dynamics of planetary gears. Mesh phasing rules to suppress rotational and translational vibrations in planetary gears are valid even when nonlinearity from tooth contact loss occurs. These mesh phasing rules, however, are not valid in the chaotic and period-doubling regions.  相似文献   

15.
The concern of this work is the local stability and period-doubling bifurcations of the response to a transverse harmonic excitation of a slender cantilever beam partially immersed in a fluid and carrying an intermediate lumped mass. The unimodal form of the non-linear dynamic model describing the beam-mass in-plane large-amplitude flexural vibration, which accounts for axial inertia, non-linear curvature and inextensibility condition, developed in Al-Qaisia et al. (2000Shock and Vibration7 , 179-194), is analyzed and studied for the resonance responses of the first three modes of vibration, using two-term harmonic balance method. Then a consistent second order stability analysis of the associated linearized variational equation is carried out using approximate methods to predict the zones of symmetry breaking leading to period-doubling bifurcation and chaos on the resonance response curves. The results of the present work are verified for selected physical system parameters by numerical simulations using methods of the qualitative theory, and good agreement was obtained between the analytical and numerical results. Also, analytical prediction of the period-doubling bifurcation and chaos boundaries obtained using a period-doubling bifurcation criterion proposed in Al-Qaisia and Hamdan (2001 Journal of Sound and Vibration244, 453-479) are compared with those of computer simulations. In addition, results of the effect of fluid density, fluid depth, mass ratio, mass position and damping on the period-doubling bifurcation diagrams are studies and presented.  相似文献   

16.
耦合发电机系统的分岔和双参数特性   总被引:3,自引:0,他引:3       下载免费PDF全文
吴淑花  孙毅  郝建红  许海波 《物理学报》2011,60(1):10507-010507
在综合分析系统基本动力学特性的基础上,通过数值计算Lyapunov指数谱、分岔图等,讨论了耦合发电机系统的混沌分岔行为和周期窗口的性态变化;计算和分析了系统在二维参数空间的双参数特性.结果显示系统在倍周期分岔中会出现缺边现象,在双参数空间系统出现复杂的分岔结构,两个控制参数对系统动力学行为的影响特性有所差别. 关键词: 耦合发电机系统 分岔 周期窗口 双参数特性  相似文献   

17.
张晓芳  周建波  张春  毕勤胜 《物理学报》2013,62(24):240505-240505
建立了周期切换下的非线性电路模型,基于子系统平衡点及其稳定性分析,分别给出了其相应的fold分岔和Hopf分岔条件,讨论了子系统在不同平衡态下由周期切换导致的各种复杂行为,指出切换系统的周期解随参数的变化存在着倍周期分岔和鞍结分岔两种失稳情形,并相应地导致不同的混沌振荡,进而结合系统轨迹及其相应的分岔分析,揭示了各种振荡模式的动力学机理. 关键词: 周期切换 倍周期分岔 鞍结分岔 混沌  相似文献   

18.
This paper presents the analysis for the transverse vibration of an axially moving finite-length beam inside which two points are supported by rotating rollers. In this study, the rollers are modeled as uniaxial springs in the transverse direction. Hamilton?s principle is applied to derive the equations of motion and boundary conditions of the system. The equations of motion include translational and rotational motions as well as flexible motion. These equations are discretized using Galerkin?s method, and then the dynamic characteristics of a flexible beam with spring supports are studied by solving an eigenvalue problem. The veering phenomenon of natural frequency loci and mode exchanges are investigated for different positions of the springs and various values of the spring stiffness. In addition, the mode localization is also analyzed using the peak amplitude ratio. It is found in this study that the first mode is localized in one of the beam spans if an appropriate value of the spring constant is selected. Furthermore, it is shown that mode localization can be used to reduce the vibration transferred from one span to the other span while a beam moves axially.  相似文献   

19.
The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.  相似文献   

20.
In this paper a non-contact magnetic spring design is presented that uses inclined magnets to produce an adjustable relationship between load force and dynamic stiffness. With appropriate choice of parameters, the spring may either operate with a range of constant natural frequency against variable load forces, or a positive stiffness in one horizontal direction may be achieved in addition to having a positive vertical stiffness. Dynamic simulations are presented to assess the non-linear stability of a planar three degree of freedom version of the system; cross-coupling between horizontal and rotation motion is shown to compromise passive stability, in which case passive constraints or active control must be used to avoid instability. The design is scalable in that using larger magnets increases the load bearing capacity and decreases the natural frequency of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号