首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olefin epoxidations are a class of reactions appropriate for the investigation of oxygenation processes in general. Here, we report the catalytic epoxidation of various olefins with a novel, cross-bridged cyclam manganese complex, Mn(Me2EBC)Cl2 (Me2EBC is 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), using hydrogen peroxide as the terminal oxidant, in acetone/water (ratio 4:1) as the solvent medium. Catalytic epoxidation studies with this system have disclosed reactions that proceed by a nonradical pathway other than the expected oxygen-rebound mechanism that is characteristic of high-valent, late-transition-metal catalysts. Direct treatment of olefins with freshly synthesized [Mn(IV)(Me2EBC)(OH)2](PF6)2 (pKa = 6.86) in either neutral or basic solution confirms earlier observations that neither the oxo-Mn(IV) nor oxo-Mn(V) species is responsible for olefin epoxidization in this case. Catalytic epoxidation experiments using the 18O labels in an acetone/water (H2(18)O) solvent demonstrate that no 18O from water (H2(18)O) is incorporated into epoxide products even though oxygen exchange was observed between the Mn(IV) species and H2(18)O, which leads to the conclusion that oxygen transfer does not proceed by the well-known oxygen-rebound mechanism. Experiments using labeled dioxygen, (18)O2, and hydrogen peroxide, H2(18)O2, confirm that an oxygen atom is transferred directly from the H2(18)O2 oxidant to the olefin substrate in the predominant pathway. The hydrogen peroxide adduct of this high-oxidation-state manganese complex, Mn(IV)(Me2EBC)(O)(OOH)+, was detected by mass spectra in aqueous solutions prepared from Mn(II)(Me2EBC)Cl2 and excess hydrogen peroxide. A Lewis acid pathway, in which oxygen is transferred to the olefin from that adduct, Mn(IV)(Me2EBC)(O)(OOH)+, is proposed for epoxidation reactions mediated by this novel, non-heme manganese complex. A minor radical pathway is also apparent in these systems.  相似文献   

2.
阳卫军 《分子催化》2012,(4):314-321
以苯乙烯、环己烯和反式二苯乙烯为烯烃底物,以双氧水、叔丁基过氧化氢和异丙苯过氧化氢为氧化剂,以苯环上对位和邻位氯取代的四苯基金属卟啉为仿生催化剂,对烯烃的催化环氧化反应进行了对比研究.讨论了不同氯取代位的四苯基金属卟啉对烯烃环氧化性能的影响.实验结果表明,在没有助催化剂存在下,邻位氯代的四(2,6-二氯苯基)铁(锰)卟啉对烯烃的环氧化具有优异的催化性能,烯烃底物的转化率和环氧选择性都比对位氯代的四苯基铁(锰)卟啉高,且反应条件温和.其中FeⅢ(TDCPP)Cl的催化性能最好,环氧化选择性最高,催化氧化苯乙烯时,环氧苯乙烷的选择性达到了90.4%.相同金属离子不同配体的金属卟啉传递氧原子的能力为TDCPP>T(p-Cl)PP>TPP.氧化剂的结构对环氧化物的选择性有较大影响.过氧键连有吸电子基团的异丙苯过氧化氢对环氧化物的选择性最高.根据实验结果,对金属卟啉催化环氧化机理进行了分析.  相似文献   

3.
The mechanism of [gamma-H2SiV2W10O40]4--catalyzed epoxidation of alkenes with hydrogen peroxide in acetonitrile/tert-butyl alcohol was investigated. The negative Hammett rho+ (-0.88) for the competitive oxidation of p-substituted styrenes and the low XSO (XSO = (nucleophilic oxidation)/(total oxidation)) value of <0.01 for the [gamma-H2SiV2W10O40]4--catalyzed oxidation of thianthrene-5-oxide reveal that the strong electrophilic oxidant species is formed on [gamma-H2SiV2W10O40]4- (I). The preferable formation of trans-epoxide for the epoxidation of 3-substituted cyclohexenes shows the steric constraints of the active oxidant on I. The 51V NMR, 183W NMR, and CSI-MS spectroscopy show that the reaction of I with hydrogen peroxide leads to the reversible formation of a hydroperoxo species [gamma-HSiV2W10O39OOH]4- (II). The successive dehydration of II forms III, which possibly has an active oxygen species of a mu-eta2:eta2-peroxo group. The kinetic and spectroscopic studies show that the present epoxidation proceeds via III. The energy diagram of the epoxidation with density functional theory (DFT) supports the idea.  相似文献   

4.
The tetra-n-butylammonium (TBA) salt of the divacant Keggin-type polyoxometalate [TBA](4)[gamma-SiW(10)O(34)(H(2)O)(2)] (I) catalyzes the oxygen-transfer reactions of olefins, allylic alcohols, and sulfides with 30 % aqueous hydrogen peroxide. The negative Hammett rho(+) (-0.99) for the competitive oxidation of p-substituted styrenes and the low value of (nucleophilic oxidation)/(total oxidation), X(SO)=0.04, for I-catalyzed oxidation of thianthrene 5-oxide (SSO) reveals that a strongly electrophilic oxidant species is formed on I. The preferential formation of trans-epoxide during epoxidation of 3-methyl-1-cyclohexene demonstrates the steric constraints of the active site of I. The I-catalyzed epoxidation proceeds with an induction period that disappears upon treatment of I with hydrogen peroxide. (29)Si and (183)W NMR spectroscopy and CSI mass spectrometry show that reaction of I with excess hydrogen peroxide leads to fast formation of a diperoxo species, [TBA](4)[gamma-SiW(10)O(32)(O(2))(2)] (II), with retention of a gamma-Keggin type structure. Whereas the isolated compound II is inactive for stoichiometric epoxidation of cyclooctene, epoxidation with II does proceed in the presence of hydrogen peroxide. The reaction of II with hydrogen peroxide would form a reactive species (III), and this step corresponds to the induction period observed in the catalytic epoxidation. The steric and electronic characters of III are the same as those for the catalytic epoxidation by I. Kinetic, spectroscopic, and mechanistic investigations show that the present epoxidation proceeds via III.  相似文献   

5.
研究了碳酸氢钠活化H<,2>O<,2>(BAP)体系对苯乙烯和不饱和脂肪酸甲酯的环氧化.分别考察了碳酸氢钠、表面活性剂、加料方式、反应时间、H<,2>O<,2>用量和反应温度对BAP体系H<,2>O<,2>分解和烯烃环氧化的影响.在n(苯乙烯):n(H<,2>O<,2>):n(NaHCO<,3>)=1:10:0.25,...  相似文献   

6.
The highly chemo-, regio-, and diastereoselective and stereospecific epoxidation of various allylic alcohols with only one equivalent of hydrogen peroxide in water can be efficiently catalyzed by the dinuclear peroxotungstate, K2[[W(=O)(O2)2(H2O)]2(mu-O)].2H2O (I). The catalyst is easily recycled while maintaining its catalytic performance. The catalytic reaction mechanism including the exchange of the water ligand to form the tungsten-alcoholate species followed by the insertion of oxygen to the carbon-carbon double bond, and the regeneration of the dinuclear peroxotungstate with hydrogen peroxide is proposed. The reaction rate shows first-order dependence on the concentrations of allylic alcohol and dinuclear peroxotungstate and zero-order dependence on the concentration of hydrogen peroxide. These results, the kinetic data, the comparison of the catalytic rates with those for the stoichiometric reactions, and kinetic isotope effects indicate that the oxygen transfer from a dinuclear peroxotungstate to the double bond is the rate-limiting step for terminal allylic alcohols such as 2-propen-1-ol (1a).  相似文献   

7.
Two molybdenum (VI) hydrogen-bonded network polymers [MoO2F4]·(4,4′-H2bpd)(H2O)2 (1) and [MoO2Cl3(H2O)]·(4,4′-H2bpd)Cl (2) (bpd = bipiperidine) have been synthesized and examined as catalysts for epoxidation of cyclooctene. Complexes of the Mo compounds containing the bpd ligand are prepared and characterized by infrared spectroscopy, thermogravimetric and elemental analyses. They have been structurally characterized by single crystal X-ray diffraction analysis. The structures of both the complexes are shown to be comprised of molybdenum and two protonated N-ligand cations that have resulted in a cross-linked hydrogen-bonded network structure. These complexes are applicable as catalysts for the cis-cyclooctene epoxidation reactions with hydrogen peroxide as a source of oxygen and NaHCO3 as a cocatalyst. It has been observed that the formation of the oxidant peroxymonocarbonate ion, HCO4 by hydrogen peroxide and bicarbonate enhances the epoxidation reaction. Both the complexes have exhibited a good activity and a very high selectivity for the formation of cyclooctene oxide. An erratum to this article can be found at  相似文献   

8.
The epoxide is a kind of versatile intermediate for manufacture of a wide variety of fine chemicals. The goal of modem efficient catalytic methods is to produce desired compounds with high yield, selectivity, low cost, safety, operational simplicity and more importantly environmentally benign manner. However, there are various oxidants, which are often hazardous or expensive, being used for both laboratory and industrial epoxidation. Hydrogen peroxide (30 wt%) solution is thought as one of the ideal oxidants because water is a sole theoretical side product. Meanwhile the epoxidation of styrene is a typical one among olefins. Here, the performance of styrene epoxidation was studied with hydrogen peroxide solution catalyzed by Co(Ⅱ) phenanthroline complex encapsulated in supercages of MCM-41.  相似文献   

9.
Olefin epoxidation provides an operative protocol to investigate the oxygen transfer process in nature. A novel manganese complex with a cross-bridged cyclam ligand, MnIV(Me2EBC)(OH)2(2+) (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), was used to study the epoxidation mechanism with biologically important oxidants, alkyl hydroperoxides. Results from direct reaction of the freshly synthesized manganese(IV) complex, [Mn(Me2EBC)(OH)2](PF6)2, with various olefins in neutral or basic solution, and from catalytic epoxidation with oxygen-labeled solvent, H2 18O, eliminate the manganese oxo moiety, Mn(IV)=O, as the reactive intermediate and obviate an oxygen rebound mechanism. Epoxidations of norbornylene under different conditions indicate multiple mechanisms for epoxidation, and cis-stilbene epoxidation under atmospheric 18O2 reveals a product distribution indicating at least two distinctive intermediates serving as the reactive species for epoxidation. In addition to alkyl peroxide radicals as dominant intermediates, an alkyl hydroperoxide adduct of high oxidation state manganese(IV) is suggested as the third kind of active intermediate responsible for epoxidation. This third intermediate functions by the Lewis acid pathway, a process best known for hydrogen peroxide adducts. Furthermore, the tert-butyl peroxide adduct of this manganese(IV) complex was detected by mass spectroscopy under catalytic oxidation conditions.  相似文献   

10.
The epoxidation of 1,4-bis(allyloxy)butane (DiBan) with hydrogen peroxide as an oxidant in the presence of o-phosphoric acid and sodium tungstate as an epoxidation catalyst was carried out in an organic solvent/aqueous solution two-phase medium. A few different phase-transfer catalysts were used in the process. The effect of the stirring speed, nature of solvent, the type of PT catalyst and molar ratio of H(2)O(2):DiBan, DiBan:Na(2)WO(4):H(3)PO(4) on the DiBan conversion as the function of time was studied. Based on the experimental results, a pseudo-first-order expression for the reaction rate was applied and most efficient conditions epoxidation were developed.  相似文献   

11.
Results of gradient-corrected periodic density functional theory calculations are reported for hydrogen abstraction from methane at O(s)(2-), O(s)(-), O(2)(s)(2-) point defect, and Sr(2+)-doped surface sites on La(2)O(3)(001). The results show that the anionic O(s)(-) species is the most active surface oxygen site. The overall reaction energy to activate methane at an O(s)(-) site to form a surface hydroxyl group and gas-phase (*)CH(3) radical is 8.2 kcal/mol, with an activation barrier of 10.1 kcal/mol. The binding energy of hydrogen at an site O(s)(-) is -102 kcal/mol. An oxygen site with similar activity can be generated by doping strontium into the oxide by a direct Sr(2+)/La(3+) exchange at the surface. The O(-)-like nature of the surface site is reflected in a calculated hydrogen binding energy of -109.7 kcal/mol. Calculations indicate that surface peroxide (O(2(s))(2-)) sites can be generated by adsorption of O(2) at surface oxygen vacancies, as well as by dissociative adsorption of O(2) across the closed-shell oxide surface of La(2)O(3)(001). The overall reaction energy and apparent activation barrier for the latter pathway are calculated to be only 12.1 and 33.0 kcal/mol, respectively. Irrespective of the route to peroxide formation, the O(2)(s)(2-) intermediate is characterized by a bent orientation with respect to the surface and an O-O bond length of 1.47 A; both attributes are consistent with structural features characteristic of classical peroxides. We found surface peroxide sites to be slightly less favorable for H-abstraction from methane than the O(s)(-) species, with DeltaE(rxn)(CH(4)) = 39.3 kcal/mol, E(act) = 47.3 kcal/mol, and DeltaE(ads)(H) = -71.5 kcal/mol. A possible mechanism for oxidative coupling of methane over La(2)O(3)(001) involving surface peroxides as the active oxygen source is suggested.  相似文献   

12.
Epoxidations of alkyl-substituted alkenes, with hydrogen peroxide as the oxygen source, are catalyzed by CH(3)ReO(3) (MTO). The kinetics of 28 such reactions were studied in 1:1 CH(3)CN-H(2)O at pH 1 and in methanol. To accommodate the different requirements of these reactions, (1)H-NMR, spectrophotometric, and thermometric techniques were used to acquire kinetic data. High concentrations of hydrogen peroxide were used, so that diperoxorhenium complex CH(3)Re(O)(eta(2)-O(2))(2)(H(2)O), B, was the only predominant and reactive form of the catalyst. The reactions between B and the alkenes are about 1 order of magnitude more rapid in the semiaqueous solvent than in methanol. The various trends in reactivity are medium-independent. The rate constants for B with the aliphatic alkenes correlate closely with the number of alkyl groups on the olefinic carbons. The reactions become markedly slower when electron-attracting groups, such as halo, hydroxy, cyano, and carbonyl, are present. The rate constants for catalytic epoxidations with B and those reported for the stoichiometric reactions of dimethyldioxirane show very similar trends in reactivity. These findings suggest a concerted mechanism in which the electron-rich double bond of the alkene attacks a peroxidic oxygen of B. These data, combined with those reported for the epoxidation of styrene (a term intended to include related molecules with ring and/or aliphatic substituents) by B and by the monoperoxo derivative of MTO, suggest that all of the rhenium-catalyzed epoxidations occur by a common mechanism. The geometry of the system at the transition state can be inferred from these data, which suggest a spiro arrangement.  相似文献   

13.
Commercially available molybdenum(VI) compounds, including molybdenum trioxide, were successfully employed as catalyst precursors in the epoxidation of olefins with urea–hydrogen peroxide adduct (UHP) in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6]. After oxidation, the corresponding epoxides were isolated by extraction with diethyl ether. Additionally the ionic liquid–catalyst mixture was recycled and reused in further catalytic cycles. The catalytic species is assumed to be an oxodiperoxomolybdenum species which forms in situ. A representative complex of this type was thus isolated and characterised. Reaction of excess 4-methylpyridine-1-oxide (4-MepyO) with MoO3 dissolved in aqueous hydrogen peroxide afforded [Mo(O)(O2)2(4-MepyO)2]·H2O (1) as yellow crystals. Compound 1, an active epoxidation catalyst, was subsequently characterised and its structure determined by X-ray crystallography.  相似文献   

14.
丁勇  高强  王滨  闫亮  索继栓 《分子催化》2005,19(2):146-149
在乙睛溶剂中考察了一系列杂多化合物和过氧化氢水溶液催化的各种缺电子的α,β-不饱和羰基化合物的环氧化反应.在所研究的杂多化合物中,二缺位的[γ-SiW10(H2O)2O34](Bu4N)4显示出了最高的活性.  相似文献   

15.
The epoxidation of cyclooctene catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl] was investigated in alcohol/acetonitrile solutions in order to determine the effects of the alcohol composition on the reaction kinetics. It was observed that alcohol composition affects both the observed rate of hydrogen peroxide consumption (the limiting reagent) and the selectivity of hydrogen peroxide utilization to form cyclooctene epoxide. The catalytically active species are formed only in alcohol-containing solvents as a consequence of (F(20)TPP)FeCl dissociation into [(F20TPP)Fe(ROH)]+ cations and Cl- anions. The observed reaction kinetics are analyzed in terms of a proposed mechanism for the epoxidation of the olefin and the decomposition of H2O2. The first step in this scheme is the reversible coordination of H2O2 to [(F20TPP)Fe(ROH)]+. The O-O bond of the coordinated H2O2 then undergoes either homolytic or heterolytic cleavage. The rate of homolytic cleavage is found to be independent of alcohol composition, whereas the rate of heterolytic cleavage increases with alcohol acidity. Heterolytic cleavage is envisioned to form iron(IV) pi-radical cations, whereas homolytic cleavage forms iron(IV) hydroxo cations. The iron(IV) radical cations are active for olefin epoxidation, whereas the iron(IV) cations catalyze the decomposition of H2O2. Reaction of iron(IV) pi-radical cations with H2O2 to form iron(IV) hydroxo cations is also included in the mechanism, a process that is favored by alcohols with a high charge density on the O atoms. The proposed mechanism describes successfully the effects of H2O2, cyclooctene, and porphyrin concentrations, as well as the effects of alcohol concentration.  相似文献   

16.
We have recently proposed a mechanism for the epoxidation of cyclooctene by H2O2 catalyzed by iron(III) [tetrakis(pentafluorophenyl)]porphyrin chloride, (F20TPP)FeCl, in solvent containing methanol [Stephenson, N. A.; Bell, A.T. Inorg. Chem. 2006, 45, 2758-2766]. In that study, we found that catalysis did not occur unless (F20TPP)FeCl first dissociated, a process facilitated by the solvation of the Cl- anion by methanol and the coordination of methanol to the (F20TPP)Fe+ cation. Methanol as well as other alcohols was also found to facilitate the heterolytic cleavage of the O-O bond of H2O2 coordinated to the (F20TPP)Fe+ cation via a generalized acid mechanism. In the present study, we have shown that catalytic activity of the (F20TPP)Fe+ cation can be achieved in aprotic solvent by displacing the tightly bound chloride anion with a weakly bound triflate anion. By working in an aprotic solvent, acetonitrile, it was possible to determine the rate of heterolytic O-O bond cleavage in coordinated H2O2 unaffected by the interaction of the peroxide with methanol. A mechanism is proposed for this system and is shown to be valid over a range of reaction conditions. The mechanisms for cyclooctene epoxidation and H2O2 decomposition for the aprotic and protic solvent systems are similar with the only difference being the mechanism of proton-transfer prior to heterolytic cleavage of the oxygen-oxygen bond of coordinated hydrogen peroxide. Comparison of the rate parameters indicates that the utilization of hydrogen peroxide for cyclooctene epoxidation is higher in a protic solvent than in an aprotic solvent and results in a smaller extent of porphyrin degradation due to free radical attack. It was also shown that water can coordinate to the iron porphyrin cation in aprotic systems resulting in catalyst deactivation; this effect was not observed when methanol was present, since methanol was found to displace all of the coordinated water.  相似文献   

17.
Co2+-exchanged faujasite zeolites can efficiently catalyze the epoxidation of styrene with molecular oxygen, and the Co2+ ions located in supercages are suggested to account for the activation of O2 for the epoxidation of styrene.  相似文献   

18.
Productive photochemical synthesis of hydrogen peroxide, H(2)O(2), from the H(2)O...O((3)P) van der Waals complex is studied in solid krypton. Experimentally, we achieve the three-step formation of H(2)O(2) from H(2)O and N(2)O precursors frozen in solid krypton. First, 193 nm photolysis of N(2)O yields oxygen atoms in solid krypton. Upon annealing at approximately 25 K, mobile oxygen atoms react with water forming the H(2)O...O complex, where the oxygen atom is in the triplet ground state. Finally, the H(2)O...O complex is converted to H(2)O(2) by irradiation at 300 nm. According to the complete active space self-consistent field modeling, hydrogen peroxide can be formed through the photoexcited H(2)O+-O- charge-transfer state of the H(2)O...O complex, which agrees with the experimental evidence.  相似文献   

19.
详细研究了Ti─Si沸石在H_2O_2存在下对氯丙烯的环氧化、苯乙烯的氧化和环己烯的氧化等反应的催化作用.发现上述三种结构的烯烃其主要定向产物并不一致:氯丙烯氧化产物主要为环氧氯丙烷,苯乙烯氧化主要产物为苯乙醛、环己烯氧化主要产物为环己二酮.说明烯烃氧化的主要定向产物的结构依赖于有机底物的结构,并不全都给出环氧产物.在三个反应中,Ti─Si沸石均表现出显著的催化活性,这可能与沸石骨架中钛的存在有关.发现在氯丙烯环氧化反应中,只有TS-1及TS-2表现出环氧化活性.推测沸石骨架位中存在的钛在氧化反应中起重要作用.  相似文献   

20.
《Tetrahedron: Asymmetry》2001,12(3):433-437
The catalytic enantioselective epoxidation of chromenes, indene and styrene using a urea–hydrogen peroxide adduct as an oxidising agent and the novel dimeric homochiral Mn(III)-Schiff base catalyst 1 has been investigated in the presence of carboxylate salts and nitrogen and oxygen coordinating co-catalysts. Conversions of more than 99% were obtained with all alkenes except styrene. Absolute chiral induction, as determined by 1H NMR using the chiral shift reagent (+)-Eu(hfc)3, was obtained in the case of nitro- and cyanochromene. The catalyst could be re-used for up to five cycles with some loss of activity due to degradation of the catalyst under epoxidation condition with retention of e.e.'s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号