共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured a p-wave Feshbach resonance in a single-component, ultracold Fermi gas of 40K atoms. We have used this resonance to enhance the normally suppressed p-wave collision cross section to values larger than the background s-wave cross section between 40K atoms in different spin states. In addition to the modification of two-body elastic processes, the resonance dramatically enhances three-body inelastic collisional loss. 相似文献
2.
JIANG KaiJun LUO Hua LI Kai ZHANG DongFang GAO TianYou PENG ShiGuo 《中国科学:物理学 力学 天文学(英文版)》2013,(3):581-587
The study of ultracold Fermi gases has exploded a variety of experimental and theoretical research since the achievement of degenerate quantum gases in the lab,which expands the research range over atomic physics,condensed matter physics,astrophysics and particle physics.Using the Feshbach resonance,one can tune the attractive two-body interaction from weak to strong and thereby make a smooth crossover from the BCS superfluid of cooper pairs to the Bose Einstein condensate of bound molecules.In this crossover regime,the pairing effect plays a significant role in interpreting the interaction mechanism.Whenever the localized or delocalized pairing occurs at sufficiently low temperature,the single-particle energy will shift with respect to free atoms,due to the two-body or many-body interaction.Measuring the pairing gap can improve the understanding of the thermodynamics and hydrodynamics of the phase transition from the pseudogap to the superfluid,which will make an analogue to the high-temperature superconductivity in condensed matter.In this work,we will give a brief introduction to a novel radio-frequency(RF) spectroscopic measurement for pairing gap in an ultracold Fermi gas,which is currently widely used on the ultracold atomic table in the lab.In different interaction regimes of the BEC-BCS crossover,ultracold atoms are excited with a RF pulse and the characteristic behavior can be extracted from the spectrum. 相似文献
3.
We present a theoretical treatment of Bragg scattering of a degenerate Fermi gas in the weakly interacting BCS regime. Our numerical calculations predict correlated scattering of Cooper pairs into a spherical shell in momentum space. The scattered shell of correlated atoms is centered at half the usual Bragg momentum transfer, and can be clearly distinguished from atoms scattered by the usual single-particle Bragg mechanism. We develop an analytic model that explains key features of the correlated-pair Bragg scattering, and determine the dependence of that scattering on the initial pair correlations in the gas. 相似文献
4.
We report on progress toward realizing a predicted superfluid phase in a Fermi gas of atoms. We present measurements of both large positive and large negative scattering lengths in a quantum degenerate Fermi gas of atoms near a magnetic-field Feshbach resonance. We employ an rf spectroscopy technique to directly measure the mean-field interaction energy, which is proportional to the s-wave scattering length. Near the peak of the resonance we observe a saturation of the interaction energy; it is in this strongly interacting regime that superfluidity is predicted to occur. We have also observed anisotropic expansion of the gas, which has recently been suggested as a signature of superfluidity. However, we find that this can be attributed to a purely collisional effect. 相似文献
5.
6.
Radio-frequency spectroscopy of weakly bound molecules in ultracold Fermi gasRadio-frequency spectroscopy of weakly bound molecules in ultracold Fermi gasRadio-frequency spectroscopy of weakly bound molecules in ultracold Fermi gas 下载免费PDF全文
We create weakly bound Feshbach molecules in ultracold Fermi gas 4~K by sweeping a magnetic field across a broad Feshbach resonance point 202.2 G with a rate of 20 ms/G and perform the dissociation process using radio-frequency (RF) technology. From RF spectroscopy, we obtain the binding energy of the weakly bound molecules in the vicinity of Feshbach resonance. Our measurement also shows that the number of atoms generated from the dissociation process is different at various magnetic fields with the same RF amplitude, which gives us a deeper understanding of weakly bound Feshbach molecules. 相似文献
7.
We create weakly bound Feshbach molecules in ultracold Fermi gas40K by sweeping a magnetic field across a broad Feshbach resonance point 202.2 G with a rate of 20 ms/G and perform the dissociation process using radio-frequency(RF) technology. From RF spectroscopy, we obtain the binding energy of the weakly bound molecules in the vicinity of Feshbach resonance. Our measurement also shows that the number of atoms generated from the dissociation process is different at various magnetic fields with the same RF amplitude, which gives us a deeper understanding of weakly bound Feshbach molecules. 相似文献
8.
Cubizolles J Bourdel T Kokkelmans SJ Shlyapnikov GV Salomon C 《Physical review letters》2003,91(24):240401
We create weakly bound Li2 molecules from a degenerate two component Fermi gas by sweeping a magnetic field across a Feshbach resonance. The atom-molecule transfer efficiency can reach 85% and is studied as a function of magnetic field and initial temperature. The bosonic molecules remain trapped for 0.5 s and their temperature is within a factor of 2 from the Bose-Einstein condensation temperature. A thermodynamical model reproduces qualitatively the experimental findings. 相似文献
9.
B. Deh C. Marzok S. Slama C. Zimmermann P. W. Courteille 《Applied physics. B, Lasers and optics》2009,97(2):387-396
We report on the observation of Bragg scattering of an ultracold Fermi gas of 6Li atoms at a dynamic optical potential. The momentum states produced in this way oscillate in the trap for time scales on the order of seconds, nearly unperturbed by collisions, which are absent for ultracold fermions due to the Pauli principle. In contrast, interactions in a mixture with 87Rb atoms lead to rapid damping. The coherence of these states is demonstrated by Ramsey-type matter wave interferometry. The signal is improved using an echo pulse sequence, allowing us to observe coherence times longer than 100 μs. Finally, we use Bragg spectroscopy to measure the in-situ momentum distribution of the 6Li cloud. Signatures for the degeneracy of the Fermi gas can be observed directly from the momentum distribution of the atoms inside the trap. 相似文献
10.
Effect of magnetic stabilization of Rydberg atoms and multiparticle complexes in an ultracold plasma
Magnetic stabilization of Rydberg atoms and multiparticle complexes in an ultracold plasma placed in a magnetic field owing to the diamagnetic shift similar to the diamagnetic shift in semiconductors has been predicted. 相似文献
11.
12.
We demonstrate two schemes for the coherent excitation of Rydberg atoms in an ultracold gas of rubidium atoms employing the three-level ladder system 5S1/2-5P3/2-n?j. In the first approach rapid adiabatic passage with pulsed laser fields yields Rydberg excitation probabilities of 90% in the center of the laser focus. In a second experiment two-photon Rydberg excitation with continuous-wave fields is applied which results in Rabi oscillations between the ground and Rydberg state. The experiments represent a prerequisite for the control of interactions in ultracold Rydberg gases and the application of ultracold Rydberg gases for quantum information processing. 相似文献
13.
The paper presents the level density for a Fermi gas with pairing interactions. First an approximate partition function is derived in terms of a universal function. Then a modified saddle-point method is used for the inverse Laplace transformation to obtain an algebraic expression which does not diverge for the ground state. This method was applied to the normal Fermi gas as well as to the paired Fermi gas. The results are compared to the standard and to the backshifted Fermi-gas level density. 相似文献
14.
Seidelin S Gomes JV Hoppeler R Sirjean O Boiron D Aspect A Westbrook CI 《Physical review letters》2004,93(9):090409
We report an experiment measuring simultaneously the temperature and the flux of ions produced by a cloud of triplet metastable helium atoms at the Bose-Einstein critical temperature. The onset of condensation is revealed by a sharp increase of the ion flux during evaporative cooling. Combining our measurements with previous measurements of ionization in a pure Bose-Einstein condensate, we extract an improved value of the scattering length a=11.3(+2.5)(-1.0) nm. The analysis includes corrections that take into account the effect of atomic interactions on the critical temperature, and thus an independent measurement of the scattering length would allow a new test of these calculations. 相似文献
15.
We propose a method for the experimental detection of a new quantum phase, the breached-pair state, in a strongly interacting ultracold Fermi gas with population imbalance. We show that through the time-of-flight Raman imaging, the presence of such a phase can be unambiguously determined with a measurement of the momentum-space phase separation of the minority spin component. To guide the experimental efforts, the momentum-space density profiles are calculated under typical experimental conditions. 相似文献
16.
In cold dense Rydberg atom samples, the dipole-dipole interaction strength is effectively resonant at the typical interatomic spacing in the sample, and the interaction has a 1/R3 dependence on interatomic spacing R. The dipole-dipole attraction leads to ionizing collisions of initially stationary atoms, which produces hot atoms and ions and initiates the evolution of initially cold samples of neutral Rydberg atoms into plasmas. More generally, the strong dipole-dipole forces lead to motion, which must be considered in proposed applications. 相似文献
17.
Spatial correlations are observed in an ultracold gas of fermionic atoms close to a Feshbach resonance. The correlations are detected by inducing spin-changing rf transitions between pairs of atoms. We observe the process in the strongly interacting regime for attractive as well as for repulsive atom-atom interactions and both in the regime of high and low quantum degeneracy. The observations are compared with a two-particle model that provides theoretical predictions for the measured rf transition rates. 相似文献
18.
In this paper,ultracold atoms and molecules in a dark magneto-optical trap(MOT) are studied via depumping the cesium cold atoms into the dark hyperfine ground state.The collision rate is reduced to 0.45s-1 and the density of the atoms is increased to 5.6×1011cm-3 when the fractional population of the atoms in the bright hyperfine ground state is as low as 0.15.The vibrational spectra of the ultracold cesium molecules are also studied in a standard MOT and in a dark MOT separately.The experimental results are analyzed by using the perturbative quantum approach. 相似文献
19.